Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: SparseSoftmax
#include <sparse_ops.h>
Menerapkan softmax ke ND SparseTensor
batch.
Ringkasan
Input mewakili ND SparseTensor dengan bentuk logis [..., B, C]
(di mana N >= 2
), dan dengan indeks yang diurutkan dalam urutan leksikografis kanonik.
Operasi ini setara dengan menerapkan tf.nn.softmax()
normal ke setiap submatriks logis terdalam dengan bentuk [B, C]
, tetapi dengan ketentuan bahwa elemen nol yang secara implisit tidak berpartisipasi . Secara khusus, algoritma ini setara dengan berikut ini:
(1) Menerapkan tf.nn.softmax()
ke tampilan yang dipadatkan dari setiap submatriks terdalam dengan bentuk [B, C]
, sepanjang dimensi ukuran-C; (2) Menutupi lokasi asli yang secara implisit nol; (3) Menormalkan kembali elemen yang tersisa.
Oleh karena itu, hasil SparseTensor
memiliki indeks dan bentuk bukan nol yang persis sama.
Argumen:
- ruang lingkup: Objek Lingkup
- sp_indices: 2-D. Matriks
NNZ x R
dengan indeks nilai tidak kosong dalam SparseTensor, dalam urutan kanonik. - sp_values: 1-D. Nilai
NNZ
yang tidak kosong sesuai dengan sp_indices
. - sp_bentuk: 1-D. Bentuk masukan SparseTensor.
Pengembalian:
-
Output
: 1-D. Nilai NNZ
untuk hasil SparseTensor
.
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-25 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::SparseSoftmax Class Reference\n\ntensorflow::ops::SparseSoftmax\n==============================\n\n`#include \u003csparse_ops.h\u003e`\n\nApplies softmax to a batched N-D `SparseTensor`.\n\nSummary\n-------\n\nThe inputs represent an N-D SparseTensor with logical shape `[..., B, C]` (where `N \u003e= 2`), and with indices sorted in the canonical lexicographic order.\n\nThis op is equivalent to applying the normal `tf.nn.softmax()` to each innermost logical submatrix with shape `[B, C]`, but with the catch that *the implicitly zero elements do not participate*. Specifically, the algorithm is equivalent to the following:\n\n(1) Applies `tf.nn.softmax()` to a densified view of each innermost submatrix with shape `[B, C]`, along the size-C dimension; (2) Masks out the original implicitly-zero locations; (3) Renormalizes the remaining elements.\n\nHence, the `SparseTensor` result has exactly the same non-zero indices and shape.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- sp_indices: 2-D. `NNZ x R` matrix with the indices of non-empty values in a SparseTensor, in canonical ordering.\n- sp_values: 1-D. `NNZ` non-empty values corresponding to `sp_indices`.\n- sp_shape: 1-D. Shape of the input SparseTensor.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 1-D. The `NNZ` values for the result `SparseTensor`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSoftmax](#classtensorflow_1_1ops_1_1_sparse_softmax_1a64ec9c22eb2f8d50797cfb39eb94009d)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_values, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sp_shape)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_softmax_1ad2dc43b15de20c26df875d2e2f5e9191) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_sparse_softmax_1a94b1fda8269b6888396b9c165fdd28b1) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_softmax_1aabb6b649a7d5f3c8a9db2dea2c44ef1a)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_softmax_1af6f0269e4c290ac6b8234ba881dafe13)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_softmax_1a1fccadd0a530764ea2d1691045ebf2a5)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### SparseSoftmax\n\n```gdscript\n SparseSoftmax(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input sp_indices,\n ::tensorflow::Input sp_values,\n ::tensorflow::Input sp_shape\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]