tensorflow::
ops::
ArgMin
#include <math_ops.h>
Returns the index with the smallest value across dimensions of a tensor.
Summary
Note that in case of ties the identity of the return value is not guaranteed.
Usage:
import tensorflow as tf a = [1, 10, 26.9, 2.8, 166.32, 62.3] b = tf.math.argmin(input = a) c = tf.keras.backend.eval(b) # c = 0 # here a[0] = 1 which is the smallest element of a across axis 0
Args:
- scope: A Scope object
-
dimension: int32 or int64, must be in the range
[-rank(input), rank(input))
. Describes which dimension of the input Tensor to reduce across. For vectors, use dimension = 0.
Returns:
-
Output
: The output tensor.
Constructors and Destructors |
|
---|---|
ArgMin
(const ::
tensorflow::Scope
& scope, ::
tensorflow::Input
input, ::
tensorflow::Input
dimension)
|
|
ArgMin
(const ::
tensorflow::Scope
& scope, ::
tensorflow::Input
input, ::
tensorflow::Input
dimension, const
ArgMin::Attrs
& attrs)
|
Public attributes |
|
---|---|
operation
|
|
output
|
Public functions |
|
---|---|
node
() const
|
::tensorflow::Node *
|
operator::tensorflow::Input
() const
|
|
operator::tensorflow::Output
() const
|
|
Public static functions |
|
---|---|
OutputType
(DataType x)
|
Structs |
|
---|---|
tensorflow::
|
Optional attribute setters for ArgMin . |
Public attributes
Public functions
ArgMin
ArgMin( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input dimension )
ArgMin
ArgMin( const ::tensorflow::Scope & scope, ::tensorflow::Input input, ::tensorflow::Input dimension, const ArgMin::Attrs & attrs )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const