Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: TerapkanAdam
#include <training_ops.h>
Perbarui '*var' sesuai dengan algoritma Adam.
Ringkasan
$$lr_t := {learning_rate} * {1 - beta_2^t} / (1 - beta_1^t)$$ $$m_t := beta_1 * m_{t-1} + (1 - beta_1) * g$$ $$v_t := beta_2 * v_{t-1} + (1 - beta_2) * g * g$$ $$variable := variable - lr_t * m_t / ({v_t} + )$$
Argumen:
- ruang lingkup: Objek Lingkup
- var: Harus dari Variabel().
- m: Harus dari Variabel().
- v: Harus dari Variabel().
- beta1_power: Harus berupa skalar.
- beta2_power: Harus berupa skalar.
- lr: Faktor penskalaan. Pasti skalar.
- beta1: Faktor momentum. Pasti skalar.
- beta2: Faktor momentum. Pasti skalar.
- epsilon: Istilah punggungan. Pasti skalar.
- lulusan: Gradien.
Atribut opsional (lihat Attrs
):
- use_locking: Jika
True
, pembaruan tensor var, m, dan v akan dilindungi oleh kunci; jika tidak, perilaku tersebut tidak terdefinisikan, namun mungkin menunjukkan lebih sedikit pertentangan. - use_nesterov: Jika
True
, gunakan pembaruan nesterov.
Pengembalian:
Konstruktor dan Destruktor |
---|
ApplyAdam (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input m, :: tensorflow::Input v, :: tensorflow::Input beta1_power, :: tensorflow::Input beta2_power, :: tensorflow::Input lr, :: tensorflow::Input beta1, :: tensorflow::Input beta2, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
|
ApplyAdam (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input m, :: tensorflow::Input v, :: tensorflow::Input beta1_power, :: tensorflow::Input beta2_power, :: tensorflow::Input lr, :: tensorflow::Input beta1, :: tensorflow::Input beta2, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ApplyAdam::Attrs & attrs) |
Atribut publik
Fungsi publik
TerapkanAdam
ApplyAdam(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input m,
::tensorflow::Input v,
::tensorflow::Input beta1_power,
::tensorflow::Input beta2_power,
::tensorflow::Input lr,
::tensorflow::Input beta1,
::tensorflow::Input beta2,
::tensorflow::Input epsilon,
::tensorflow::Input grad
)
TerapkanAdam
ApplyAdam(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input m,
::tensorflow::Input v,
::tensorflow::Input beta1_power,
::tensorflow::Input beta2_power,
::tensorflow::Input lr,
::tensorflow::Input beta1,
::tensorflow::Input beta2,
::tensorflow::Input epsilon,
::tensorflow::Input grad,
const ApplyAdam::Attrs & attrs
)
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Fungsi statis publik
Gunakan Penguncian
Attrs UseLocking(
bool x
)
GunakanNesterov
Attrs UseNesterov(
bool x
)
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::ApplyAdam Class Reference\n\ntensorflow::ops::ApplyAdam\n==========================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the Adam algorithm.\n\nSummary\n-------\n\n$$lr_t := {learning_rate} \\* {1 - beta_2\\^t} / (1 - beta_1\\^t)$$ $$m_t := beta_1 \\* m_{t-1} + (1 - beta_1) \\* g$$ $$v_t := beta_2 \\* v_{t-1} + (1 - beta_2) \\* g \\* g$$ $$variable := variable - lr_t \\* m_t / ({v_t} + )$$\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- m: Should be from a Variable().\n- v: Should be from a Variable().\n- beta1_power: Must be a scalar.\n- beta2_power: Must be a scalar.\n- lr: Scaling factor. Must be a scalar.\n- beta1: Momentum factor. Must be a scalar.\n- beta2: Momentum factor. Must be a scalar.\n- epsilon: Ridge term. Must be a scalar.\n- grad: The gradient.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/apply-adam/attrs#structtensorflow_1_1ops_1_1_apply_adam_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var, m, and v tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n- use_nesterov: If `True`, uses the nesterov update.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ApplyAdam](#classtensorflow_1_1ops_1_1_apply_adam_1a63f38ab9210b19bbb905e9d494fd0d7c)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1_power, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2_power, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad)` ||\n| [ApplyAdam](#classtensorflow_1_1ops_1_1_apply_adam_1a23c9c116f231e976487216fbf1d880dd)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1_power, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2_power, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta1, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta2, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const `[ApplyAdam::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/apply-adam/attrs#structtensorflow_1_1ops_1_1_apply_adam_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_apply_adam_1a56261a4d240b654e6a61c42931d3b847) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_apply_adam_1a51b86c03755b5fa8584c9228a13594d2) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_apply_adam_1aca5ba972ba714c19db3728d2dab29a8e)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_apply_adam_1a8e17d2267864bd25f3ab523a287abb8a)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_apply_adam_1a596890f0d578e64a6f55540e249ca5c8)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_apply_adam_1adf5062f34d44b504f428d128fcfecf94)`(bool x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/apply-adam/attrs#structtensorflow_1_1ops_1_1_apply_adam_1_1_attrs) |\n| [UseNesterov](#classtensorflow_1_1ops_1_1_apply_adam_1ae368b25e083d00d0d74551be052064c3)`(bool x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/apply-adam/attrs#structtensorflow_1_1ops_1_1_apply_adam_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ApplyAdam::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/apply-adam/attrs) | Optional attribute setters for [ApplyAdam](/versions/r2.1/api_docs/cc/class/tensorflow/ops/apply-adam#classtensorflow_1_1ops_1_1_apply_adam). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### ApplyAdam\n\n```gdscript\n ApplyAdam(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input m,\n ::tensorflow::Input v,\n ::tensorflow::Input beta1_power,\n ::tensorflow::Input beta2_power,\n ::tensorflow::Input lr,\n ::tensorflow::Input beta1,\n ::tensorflow::Input beta2,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad\n)\n``` \n\n### ApplyAdam\n\n```gdscript\n ApplyAdam(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input m,\n ::tensorflow::Input v,\n ::tensorflow::Input beta1_power,\n ::tensorflow::Input beta2_power,\n ::tensorflow::Input lr,\n ::tensorflow::Input beta1,\n ::tensorflow::Input beta2,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n const ApplyAdam::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n``` \n\n### UseNesterov\n\n```text\nAttrs UseNesterov(\n bool x\n)\n```"]]