Aprenda o que há de mais recente em aprendizado de máquina, IA generativa e muito mais no WiML Symposium 2023
Registre-se
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
tensorflow :: ops :: BroadcastTo
#include <array_ops.h>
Transmita uma matriz para uma forma compatível.
Resumo
Broadcasting é o processo de fazer matrizes com formatos compatíveis para operações aritméticas. Duas formas são compatíveis se para cada par de dimensões forem iguais ou se uma delas for uma. Ao tentar transmitir um Tensor para uma forma, ele começa com as dimensões finais e segue seu caminho adiante.
Por exemplo,
x = tf.constant ([1, 2, 3]) y = tf.broadcast_to (x, [3, 3]) print (y) tf.Tensor ([[1 2 3] [1 2 3] [1 2 3]], forma = (3, 3), dtipo = int32)
No exemplo acima, o Tensor de entrada com a forma de [1, 3]
é transmitido para o Tensor de saída com a forma de [3, 3]
.
Argumentos:
- escopo: um objeto Scope
- entrada: um tensor para transmitir.
- forma: Um tensor
int
1-D. A forma da saída desejada.
Retorna:
Atributos públicos
Funções públicas
nó
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador :: tensorflow :: Saída
operator::tensorflow::Output() const
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2020-04-20 UTC.
[null,null,["Última atualização 2020-04-20 UTC."],[],[],null,["# tensorflow::ops::BroadcastTo Class Reference\n\ntensorflow::ops::BroadcastTo\n============================\n\n`#include \u003carray_ops.h\u003e`\n\nBroadcast an array for a compatible shape.\n\nSummary\n-------\n\nBroadcasting is the process of making arrays to have compatible shapes for arithmetic operations. Two shapes are compatible if for each dimension pair they are either equal or one of them is one. When trying to broadcast a [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) to a shape, it starts with the trailing dimensions, and works its way forward.\n\nFor example,\n\nx = tf.constant(\\[1, 2, 3\\]) y = tf.broadcast_to(x, \\[3, 3\\]) print(y) tf.Tensor( \\[\\[1 2 3\\] \\[1 2 3\\] \\[1 2 3\\]\\], shape=(3, 3), dtype=int32)\n\nIn the above example, the input [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with the shape of `[1, 3]` is broadcasted to output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape of `[3, 3]`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: A [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) to broadcast.\n- shape: An 1-D `int`[Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor). The shape of the desired output.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [BroadcastTo](#classtensorflow_1_1ops_1_1_broadcast_to_1a37bf1f8b63e588def9b3805017209ee6)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_broadcast_to_1abb152ff71cda1cf3af84a7c656faac03) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_broadcast_to_1aaa451e1fc17fe438aa744a2880efca62) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_broadcast_to_1a2c429236acfd549d2252190a63a446f0)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_broadcast_to_1a21be2705c2eba98f1cf7560295561b58)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_broadcast_to_1a43222f4482f5ccb868548380633ce7f5)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### BroadcastTo\n\n```gdscript\n BroadcastTo(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input shape\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]