Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
#include <nn_ops.h>
Menghitung gradien konvolusi 3-D sehubungan dengan masukan.
Ringkasan
Argumen:
- ruang lingkup: Objek Lingkup
- input_sizes: Vektor bilangan bulat yang mewakili bentuk tensor
input
, dengan input
adalah tensor 5-D [batch, depth, rows, cols, in_channels]
. - filter: Bentuk
[depth, rows, cols, in_channels, out_channels]
. in_channels
harus cocok antara input
dan filter
. - out_backprop: Sinyal backprop berbentuk
[batch, out_depth, out_rows, out_cols, out_channels]
. - langkah: tensor 1-D dengan panjang 5. Langkah jendela geser untuk setiap dimensi
input
. Harus memiliki strides[0] = strides[4] = 1
. - padding: Jenis algoritma padding yang akan digunakan.
Atribut opsional (lihat Attrs
):
- data_format: Format data dari data masukan dan keluaran. Dengan format default "NDHWC", data disimpan dalam urutan: [batch, in_ depth, in_height, in_width, in_channels]. Alternatifnya, formatnya bisa "NCDHW", urutan penyimpanan datanya adalah: [batch, in_channels, in_ depth, in_height, in_width].
- dilatasi: tensor 1-D dengan panjang 5. Faktor dilatasi untuk setiap dimensi
input
. Jika diatur ke k > 1, akan ada k-1 sel yang dilewati di antara setiap elemen filter pada dimensi tersebut. Urutan dimensi ditentukan oleh nilai data_format
, lihat di atas untuk detailnya. Pelebaran dalam dimensi batch dan kedalaman harus 1.
Pengembalian:
Konstruktor dan Destruktor |
---|
Conv3DBackpropInputV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input input_sizes, :: tensorflow::Input filter, :: tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
Conv3DBackpropInputV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input input_sizes, :: tensorflow::Input filter, :: tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding, const Conv3DBackpropInputV2::Attrs & attrs) |
Atribut publik
Fungsi publik
Fungsi statis publik
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::Conv3DBackpropInputV2 Class Reference\n\ntensorflow::ops::Conv3DBackpropInputV2\n======================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the gradients of 3-D convolution with respect to the input.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input_sizes: An integer vector representing the tensor shape of `input`, where `input` is a 5-D `[batch, depth, rows, cols, in_channels]` tensor.\n- filter: Shape `[depth, rows, cols, in_channels, out_channels]`. `in_channels` must match between `input` and `filter`.\n- out_backprop: Backprop signal of shape `[batch, out_depth, out_rows, out_cols, out_channels]`.\n- strides: 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/conv3-d-backprop-input-v2/attrs#structtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1_1_attrs)):\n\n- data_format: The data format of the input and output data. With the default format \"NDHWC\", the data is stored in the order of: \\[batch, in_depth, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCDHW\", the data storage order is: \\[batch, in_channels, in_depth, in_height, in_width\\].\n- dilations: 1-D tensor of length 5. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Conv3DBackpropInputV2](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1aaae19e097fea9d7fc6f815e20faaccd6)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_sizes, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [Conv3DBackpropInputV2](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a5c69778ddcd70862d70f7d3630d179c3)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_sizes, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[Conv3DBackpropInputV2::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/conv3-d-backprop-input-v2/attrs#structtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a67a6ca650c6870d418f1fdd658f3fa6b) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1af0d983aaf022b911e25e9f0615b62c20) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1adb36b7921921ed6c8a2684a8df5cc0ae)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a0c617c40ac75a3540b1280f1e02147ed)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a8b8868a10a3fac1cb6623b75a7bd556d)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a5a0f9e531569a6645dc6eb72894476c5)`(StringPiece x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/conv3-d-backprop-input-v2/attrs#structtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1_1_attrs) |\n| [Dilations](#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1a7c96359abb43990fc21d1cf52f468a1b)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/conv3-d-backprop-input-v2/attrs#structtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2_1_1_attrs) |\n\n| ### Structs ||\n|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::Conv3DBackpropInputV2::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/conv3-d-backprop-input-v2/attrs) | Optional attribute setters for [Conv3DBackpropInputV2](/versions/r2.1/api_docs/cc/class/tensorflow/ops/conv3-d-backprop-input-v2#classtensorflow_1_1ops_1_1_conv3_d_backprop_input_v2). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Conv3DBackpropInputV2\n\n```gdscript\n Conv3DBackpropInputV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_sizes,\n ::tensorflow::Input filter,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### Conv3DBackpropInputV2\n\n```gdscript\n Conv3DBackpropInputV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_sizes,\n ::tensorflow::Input filter,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const Conv3DBackpropInputV2::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n``` \n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n```"]]