Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: LantaiMod
#include <math_ops.h>
Mengembalikan sisa pembagian berdasarkan elemen.
Ringkasan
Ketika x < 0
xatau y < 0
adalah
benar, ini mengikuti semantik Python karena hasilnya di sini konsisten dengan pembagian lantai. Misalnya floor(x / y) * y + mod(x, y) = x
.
CATATAN : FloorMod
mendukung penyiaran. Lebih lanjut tentang penyiaran di sini
Argumen:
Pengembalian:
Atribut publik
Fungsi publik
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-25 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::FloorMod Class Reference\n\ntensorflow::ops::FloorMod\n=========================\n\n`#include \u003cmath_ops.h\u003e`\n\nReturns element-wise remainder of division.\n\nSummary\n-------\n\nWhen `x \u003c 0` xor `y \u003c 0` is\n\ntrue, this follows Python semantics in that the result here is consistent with a flooring divide. E.g. `floor(x / y) * y + mod(x, y) = x`.\n\n*NOTE* : [FloorMod](/versions/r2.1/api_docs/cc/class/tensorflow/ops/floor-mod#classtensorflow_1_1ops_1_1_floor_mod) supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The z tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [FloorMod](#classtensorflow_1_1ops_1_1_floor_mod_1a34457c7c33286a90d5b2877cf949255a)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` x, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` y)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_floor_mod_1a3a085f39f4494b346d655dee742ee76f) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [z](#classtensorflow_1_1ops_1_1_floor_mod_1ac4d9bd96ad307be9f91f52b0aad17227) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_floor_mod_1a76a8f84a099ed7f2172c23952b8e56bc)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_floor_mod_1a40e8c3fb00de30f9b6f361d180336097)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_floor_mod_1ad99a283a5c4fede4a1dd8801952061d2)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### z\n\n```text\n::tensorflow::Output z\n``` \n\nPublic functions\n----------------\n\n### FloorMod\n\n```gdscript\n FloorMod(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input x,\n ::tensorflow::Input y\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]