Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
aliran tensor:: operasi:: SparseApplyFtrl
#include <training_ops.h>
Perbarui entri yang relevan di '*var' sesuai dengan skema Ftrl-proksimal.
Ringkasan
Itu untuk baris yang memiliki grad, kami memperbarui var, accum dan linear sebagai berikut: $$accum_new = accum + grad * grad$$ $$linear += grad + (accum_{new}^{-lr_{power}} - accum^{-lr_{power}} / lr * var$$ $$quadratic = 1.0 / (accum_{new}^{lr_{power}} * lr) + 2 * l2$$ $$var = (sign(linear) * l1 - linear) / quadratic\ if\ |linear| > l1\ else\ 0.0$$ $$accum = accum_{new}$$
Argumen:
- ruang lingkup: Objek Lingkup
- var: Harus dari Variabel().
- accum: Harus dari Variabel().
- linier: Harus dari Variabel().
- lulusan: Gradien.
- indeks: Vektor indeks ke dalam dimensi pertama var dan accum.
- lr: Faktor penskalaan. Pasti skalar.
- l1: Regularisasi L1. Pasti skalar.
- l2: Regularisasi L2. Pasti skalar.
- lr_power: Faktor penskalaan. Pasti skalar.
Atribut opsional (lihat Attrs
):
- use_locking: Jika
True
, pembaruan tensor var dan accum akan dilindungi oleh kunci; jika tidak, perilaku tersebut tidak terdefinisikan, namun mungkin menunjukkan lebih sedikit pertentangan.
Pengembalian:
Konstruktor dan Destruktor |
---|
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power)
|
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs) |
Atribut publik
Fungsi publik
SparseApplyFtrl
SparseApplyFtrl(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input accum,
::tensorflow::Input linear,
::tensorflow::Input grad,
::tensorflow::Input indices,
::tensorflow::Input lr,
::tensorflow::Input l1,
::tensorflow::Input l2,
::tensorflow::Input lr_power,
const SparseApplyFtrl::Attrs & attrs
)
simpul
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Keluaran
operator::tensorflow::Output() const
Fungsi statis publik
Gunakan Penguncian
Attrs UseLocking(
bool x
)
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
Terakhir diperbarui pada 2025-07-26 UTC.
[null,null,["Terakhir diperbarui pada 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::SparseApplyFtrl Class Reference\n\ntensorflow::ops::SparseApplyFtrl\n================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate relevant entries in '\\*var' according to the Ftrl-proximal scheme.\n\nSummary\n-------\n\nThat is for rows we have grad for, we update var, accum and linear as follows: $$accum_new = accum + grad \\* grad$$ $$linear += grad + (accum_{new}\\^{-lr_{power}} - accum\\^{-lr_{power}} / lr \\* var$$ $$quadratic = 1.0 / (accum_{new}\\^{lr_{power}} \\* lr) + 2 \\* l2$$ $$var = (sign(linear) \\* l1 - linear) / quadratic\\\\ if\\\\ \\|linear\\| \\\u003e l1\\\\ else\\\\ 0.0$$ $$accum = accum_{new}$$\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- accum: Should be from a Variable().\n- linear: Should be from a Variable().\n- grad: The gradient.\n- indices: A vector of indices into the first dimension of var and accum.\n- lr: Scaling factor. Must be a scalar.\n- l1: L1 regularization. Must be a scalar.\n- l2: L2 regularization. Must be a scalar.\n- lr_power: Scaling factor. Must be a scalar.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl/attrs#structtensorflow_1_1ops_1_1_sparse_apply_ftrl_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseApplyFtrl](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1acfbd35749a971ae408ba24c0bb56facd)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` linear, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l1, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr_power)` ||\n| [SparseApplyFtrl](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1ae80720b9dac0b6801255f556bd27e249)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` linear, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l1, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr_power, const `[SparseApplyFtrl::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl/attrs#structtensorflow_1_1ops_1_1_sparse_apply_ftrl_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1ac97a954bbe52219dcd24e48de02f37e2) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1aade91702a26588081047940b922727e9) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1acd3ec55f3b5d70e30f21395166e3c638)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1afa8bb71a8583497722ad2240f94c157f)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1a5964fb493100ead822e39ca5e2ed2710)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1aa19ce04694959f2590e9a0286d0ff8b9)`(bool x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl/attrs#structtensorflow_1_1ops_1_1_sparse_apply_ftrl_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::SparseApplyFtrl::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl/attrs) | Optional attribute setters for [SparseApplyFtrl](/versions/r2.1/api_docs/cc/class/tensorflow/ops/sparse-apply-ftrl#classtensorflow_1_1ops_1_1_sparse_apply_ftrl). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### SparseApplyFtrl\n\n```gdscript\n SparseApplyFtrl(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input linear,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n ::tensorflow::Input lr,\n ::tensorflow::Input l1,\n ::tensorflow::Input l2,\n ::tensorflow::Input lr_power\n)\n``` \n\n### SparseApplyFtrl\n\n```gdscript\n SparseApplyFtrl(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input linear,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n ::tensorflow::Input lr,\n ::tensorflow::Input l1,\n ::tensorflow::Input l2,\n ::tensorflow::Input lr_power,\n const SparseApplyFtrl::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]