tensorflow:: אופס:: AvgPool3DGrad
#include <nn_ops.h>
מחשב שיפועים של פונקציית איגום ממוצעת.
תַקצִיר
טיעונים:
- scope: אובייקט Scope
- orig_input_shape: מידות הקלט המקוריות.
- grad: פלט אחורי של צורה
[batch, depth, rows, cols, channels]
. - ksize: טנסור 1-D באורך 5. גודל החלון עבור כל מימד של טנסור הקלט. חייב להיות
ksize[0] = ksize[4] = 1
. - צעדים: טנסור 1-D באורך 5. הצעד של חלון ההזזה עבור כל מימד של
input
. חייב להיותstrides[0] = strides[4] = 1
. - ריפוד: סוג אלגוריתם הריפוד שיש להשתמש בו.
מאפיינים אופציונליים (ראה Attrs
):
- data_format: פורמט הנתונים של נתוני הקלט והפלט. עם פורמט ברירת המחדל "NDHWC", הנתונים מאוחסנים בסדר של: [אצווה, עומק_, גובה_, רוחב_, בערוצים]. לחלופין, הפורמט יכול להיות "NCDHW", סדר אחסון הנתונים הוא: [אצווה, in_channels, in_depth, in_height, in_width].
החזרות:
-
Output
: משענת הגב לקלט.
בנאים והורסים | |
---|---|
AvgPool3DGrad (const :: tensorflow::Scope & scope, :: tensorflow::Input orig_input_shape, :: tensorflow::Input grad, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding) | |
AvgPool3DGrad (const :: tensorflow::Scope & scope, :: tensorflow::Input orig_input_shape, :: tensorflow::Input grad, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding, const AvgPool3DGrad::Attrs & attrs) |
תכונות ציבוריות | |
---|---|
operation | |
output |
תפקידים ציבוריים | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
פונקציות סטטיות ציבוריות | |
---|---|
DataFormat (StringPiece x) |
מבנים | |
---|---|
tensorflow:: ops:: AvgPool3DGrad:: Attrs | קובעי תכונות אופציונליים עבור AvgPool3DGrad . |
תכונות ציבוריות
מִבצָע
Operation operation
תְפוּקָה
::tensorflow::Output output
תפקידים ציבוריים
AvgPool3DGrad
AvgPool3DGrad( const ::tensorflow::Scope & scope, ::tensorflow::Input orig_input_shape, ::tensorflow::Input grad, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding )
AvgPool3DGrad
AvgPool3DGrad( const ::tensorflow::Scope & scope, ::tensorflow::Input orig_input_shape, ::tensorflow::Input grad, const gtl::ArraySlice< int > & ksize, const gtl::ArraySlice< int > & strides, StringPiece padding, const AvgPool3DGrad::Attrs & attrs )
צוֹמֶת
::tensorflow::Node * node() const
מפעיל::tensorflow::קלט
operator::tensorflow::Input() const
אופרטור::tensorflow::פלט
operator::tensorflow::Output() const
פונקציות סטטיות ציבוריות
DataFormat
Attrs DataFormat( StringPiece x )
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-26 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-26 (שעון UTC)."],[],[],null,["# tensorflow::ops::AvgPool3DGrad Class Reference\n\ntensorflow::ops::AvgPool3DGrad\n==============================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes gradients of average pooling function.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- orig_input_shape: The original input dimensions.\n- grad: [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) backprop of shape `[batch, depth, rows, cols, channels]`.\n- ksize: 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have `ksize[0] = ksize[4] = 1`.\n- strides: 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool3-d-grad/attrs#structtensorflow_1_1ops_1_1_avg_pool3_d_grad_1_1_attrs)):\n\n- data_format: The data format of the input and output data. With the default format \"NDHWC\", the data is stored in the order of: \\[batch, in_depth, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCDHW\", the data storage order is: \\[batch, in_channels, in_depth, in_height, in_width\\].\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The backprop for input.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [AvgPool3DGrad](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1ac294eebcd4d868dfa68e6a5f7d4c5ea9)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` orig_input_shape, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [AvgPool3DGrad](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1a8362b0628d56d49ee76c24faaed842f9)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` orig_input_shape, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[AvgPool3DGrad::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool3-d-grad/attrs#structtensorflow_1_1ops_1_1_avg_pool3_d_grad_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1ac7d2ea5c42f4949a936e71f6debf81be) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1a9709fb2d31ca099ef81e317ecef40df8) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1a30c25a58bfaad694e981cf0bbf407254)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1a4738d18b18c18a46d9f6d9c262df86a2)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1ac991ec111bedce628daadef30690cd18)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_avg_pool3_d_grad_1aa9e0fbc35b1b72dd2e277ff5db79ca99)`(StringPiece x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool3-d-grad/attrs#structtensorflow_1_1ops_1_1_avg_pool3_d_grad_1_1_attrs) |\n\n| ### Structs ||\n|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::AvgPool3DGrad::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool3-d-grad/attrs) | Optional attribute setters for [AvgPool3DGrad](/versions/r2.1/api_docs/cc/class/tensorflow/ops/avg-pool3-d-grad#classtensorflow_1_1ops_1_1_avg_pool3_d_grad). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### AvgPool3DGrad\n\n```gdscript\n AvgPool3DGrad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input orig_input_shape,\n ::tensorflow::Input grad,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### AvgPool3DGrad\n\n```gdscript\n AvgPool3DGrad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input orig_input_shape,\n ::tensorflow::Input grad,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const AvgPool3DGrad::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n```"]]