Aprenda o que há de mais recente em aprendizado de máquina, IA generativa e muito mais no WiML Symposium 2023
Registre-se
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
tensorflow :: ops :: AvgPool
#include <nn_ops.h>
Executa o agrupamento médio na entrada.
Resumo
Cada entrada na output
é a média da janela ksize
tamanho correspondente em value
.
Argumentos:
- escopo: um objeto Scope
- valor: 4-D com forma
[batch, height, width, channels]
. - ksize: O tamanho da janela deslizante para cada dimensão de
value
. - strides: a distância da janela deslizante para cada dimensão de
value
. - preenchimento: o tipo de algoritmo de preenchimento a ser usado.
Atributos opcionais (consulte Attrs
):
- data_format: especifique o formato dos dados de entrada e saída. Com o formato padrão "NHWC", os dados são armazenados na ordem de: [batch, in_height, in_width, in_channels]. Alternativamente, o formato pode ser "NCHW", a ordem de armazenamento de dados de: [lote, in_channels, in_height, in_width].
Retorna:
-
Output
: o tensor médio de saída combinada.
Funções estáticas públicas |
---|
DataFormat (StringPiece x) | |
Atributos públicos
Funções públicas
AvgPool
AvgPool(
const ::tensorflow::Scope & scope,
::tensorflow::Input value,
const gtl::ArraySlice< int > & ksize,
const gtl::ArraySlice< int > & strides,
StringPiece padding
)
nó
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador :: tensorflow :: Saída
operator::tensorflow::Output() const
Funções estáticas públicas
Attrs DataFormat(
StringPiece x
)
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2020-04-20 UTC.
[null,null,["Última atualização 2020-04-20 UTC."],[],[],null,["# tensorflow::ops::AvgPool Class Reference\n\ntensorflow::ops::AvgPool\n========================\n\n`#include \u003cnn_ops.h\u003e`\n\nPerforms average pooling on the input.\n\nSummary\n-------\n\nEach entry in `output` is the mean of the corresponding size `ksize` window in `value`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- value: 4-D with shape `[batch, height, width, channels]`.\n- ksize: The size of the sliding window for each dimension of `value`.\n- strides: The stride of the sliding window for each dimension of `value`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool/attrs#structtensorflow_1_1ops_1_1_avg_pool_1_1_attrs)):\n\n- data_format: Specify the data format of the input and output data. With the default format \"NHWC\", the data is stored in the order of: \\[batch, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCHW\", the data storage order of: \\[batch, in_channels, in_height, in_width\\].\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The average pooled output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [AvgPool](#classtensorflow_1_1ops_1_1_avg_pool_1a58bd5cc7bc50a385d9b5407b567887f3)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` value, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [AvgPool](#classtensorflow_1_1ops_1_1_avg_pool_1a0f24ed27c87f4865fcaa1b312d36051e)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` value, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[AvgPool::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool/attrs#structtensorflow_1_1ops_1_1_avg_pool_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_avg_pool_1a9ba893843bb88eb584fe939ccc894c47) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_avg_pool_1a7450e2619257f7964d4f2cd80fe4ef06) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_avg_pool_1a8ec01e53d8d2acab543c9012e451de71)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_avg_pool_1a4e2e1ea74f43b355dca513d2bfe8d0a0)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_avg_pool_1ad407c5a3d99897fdc14d133bac7172d0)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_avg_pool_1a4295525a4e3759a16de6a93c7f421b8d)`(StringPiece x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool/attrs#structtensorflow_1_1ops_1_1_avg_pool_1_1_attrs) |\n\n| ### Structs ||\n|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::AvgPool::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool/attrs) | Optional attribute setters for [AvgPool](/versions/r2.1/api_docs/cc/class/tensorflow/ops/avg-pool#classtensorflow_1_1ops_1_1_avg_pool). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### AvgPool\n\n```gdscript\n AvgPool(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input value,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### AvgPool\n\n```gdscript\n AvgPool(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input value,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const AvgPool::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n```"]]