تدفق التوتر:: العمليات:: البث إلى
#include <array_ops.h>
بث مصفوفة للحصول على شكل متوافق.
ملخص
البث هو عملية جعل المصفوفات تحتوي على أشكال متوافقة للعمليات الحسابية. يكون الشكلان متوافقين إذا كانا متساويين لكل زوج من الأبعاد أو كان أحدهما واحدًا. عند محاولة بث Tensor إلى شكل ما، فإنه يبدأ بالأبعاد الزائدة، ويشق طريقه للأمام.
على سبيل المثال،
x = tf.constant([1, 2, 3]) y = tf.broadcast_to(x, [3, 3]) print(y) tf.Tensor( [[1 2 3] [1 2 3] [1 2 3]]، الشكل=(3، 3)، dtype=int32)
في المثال أعلاه، يتم بث موتر الإدخال بالشكل [1, 3]
إلى موتر الإخراج بالشكل [3, 3]
.
الحجج:
- النطاق: كائن النطاق
- الإدخال: موتر للبث.
- الشكل: موتر
int
العمليات 1-D. شكل الناتج المطلوب .
العوائد:
الصفات العامة
عملية
Operation operation
الإخراج
::tensorflow::Output output
الوظائف العامة
البث إلى
BroadcastTo(
const ::tensorflow::Scope & scope,
::tensorflow::Input input,
::tensorflow::Input shape
)
العقدة
::tensorflow::Node * node() const
operator::tensorflow::Input() const
المشغل::tensorflow::الإخراج
operator::tensorflow::Output() const
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-26 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# tensorflow::ops::BroadcastTo Class Reference\n\ntensorflow::ops::BroadcastTo\n============================\n\n`#include \u003carray_ops.h\u003e`\n\nBroadcast an array for a compatible shape.\n\nSummary\n-------\n\nBroadcasting is the process of making arrays to have compatible shapes for arithmetic operations. Two shapes are compatible if for each dimension pair they are either equal or one of them is one. When trying to broadcast a [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) to a shape, it starts with the trailing dimensions, and works its way forward.\n\nFor example,\n\nx = tf.constant(\\[1, 2, 3\\]) y = tf.broadcast_to(x, \\[3, 3\\]) print(y) tf.Tensor( \\[\\[1 2 3\\] \\[1 2 3\\] \\[1 2 3\\]\\], shape=(3, 3), dtype=int32)\n\nIn the above example, the input [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with the shape of `[1, 3]` is broadcasted to output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with shape of `[3, 3]`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: A [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) to broadcast.\n- shape: An 1-D `int`[Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor). The shape of the desired output.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): A [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [BroadcastTo](#classtensorflow_1_1ops_1_1_broadcast_to_1a37bf1f8b63e588def9b3805017209ee6)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` shape)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_broadcast_to_1abb152ff71cda1cf3af84a7c656faac03) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_broadcast_to_1aaa451e1fc17fe438aa744a2880efca62) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_broadcast_to_1a2c429236acfd549d2252190a63a446f0)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_broadcast_to_1a21be2705c2eba98f1cf7560295561b58)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_broadcast_to_1a43222f4482f5ccb868548380633ce7f5)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### BroadcastTo\n\n```gdscript\n BroadcastTo(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input shape\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]