Conozca lo último en aprendizaje automático, IA generativa y más en el
Simposio WiML 2023.
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
tensorflow :: operaciones :: SoftmaxCrossEntropyWithLogits
#include <nn_ops.h>
Calcula el costo de la entropía cruzada de Softmax y los gradientes para propagar hacia atrás.
Resumen
Las entradas son los logits, no las probabilidades.
Argumentos:
- alcance: un objeto de alcance
- características: tamaño de lote x matriz num_clases
- etiquetas: tamaño_lote x matriz num_clases El llamador debe asegurarse de que cada lote de etiquetas representa una distribución de probabilidad válida.
Devoluciones:
- Pérdida de
Output
: Por ejemplo, pérdida (vector batch_size). - Backprop de
Output
: gradientes retropropagados (batch_size x num_classes matrix).
Atributos públicos
Funciones publicas
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2020-04-20 (UTC)
[null,null,["Última actualización: 2020-04-20 (UTC)"],[],[],null,["# tensorflow::ops::SoftmaxCrossEntropyWithLogits Class Reference\n\ntensorflow::ops::SoftmaxCrossEntropyWithLogits\n==============================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes softmax cross entropy cost and gradients to backpropagate.\n\nSummary\n-------\n\nInputs are the logits, not probabilities.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- features: batch_size x num_classes matrix\n- labels: batch_size x num_classes matrix The caller must ensure that each batch of labels represents a valid probability distribution.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) loss: Per example loss (batch_size vector).\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) backprop: backpropagated gradients (batch_size x num_classes matrix).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SoftmaxCrossEntropyWithLogits](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1a4cbff4fa9d4606e374b1a88b5de132dc)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` features, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` labels)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [backprop](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1a3f3e88d3a28b38d7190c586e53a90391) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [loss](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1ad3f6fea2fc731063932763fa4b3c8ce0) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits_1aec7fdf4d82369e8bc00d0c9c8dd7faab) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\nPublic attributes\n-----------------\n\n### backprop\n\n```text\n::tensorflow::Output backprop\n``` \n\n### loss\n\n```text\n::tensorflow::Output loss\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### SoftmaxCrossEntropyWithLogits\n\n```gdscript\n SoftmaxCrossEntropyWithLogits(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input features,\n ::tensorflow::Input labels\n)\n```"]]