تدفق التوتر:: العمليات:: TensorArraySplit
#include <data_flow_ops.h>
قم بتقسيم البيانات من قيمة الإدخال إلى عناصر TensorArray .
ملخص
على افتراض أن lengths
تأخذ القيم
(ن0، ن1، ...، ن(ت-1))
and that `value` has shape
(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)```,this splits values into a TensorArray with T tensors.
TensorArray index t will be the subtensor of values with starting position
```(n0 + n1 + ... + n(t-1), 0, 0, ...)
and having size
nt x d0 x d1 x ...```Arguments:
- scope: A Scope object
- handle: The handle to a TensorArray.
- value: The concatenated tensor to write to the TensorArray.
- lengths: The vector of lengths, how to split the rows of value into the TensorArray.
- flow_in: A float scalar that enforces proper chaining of operations.
Returns:
Output
: A float scalar that enforces proper chaining of operations.
Constructors and Destructors |
|
---|---|
TensorArraySplit(const ::tensorflow::Scope & scope, ::tensorflow::Input handle, ::tensorflow::Input value, ::tensorflow::Input lengths, ::tensorflow::Input flow_in)
|
Public attributes |
|
---|---|
flow_out
|
|
operation
|
Public functions |
|
---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Public attributes
flow_out
::tensorflow::Output flow_out
عملية
Operation operation
الوظائف العامة
TensorArraySplit
TensorArraySplit( const ::tensorflow::Scope & scope, ::tensorflow::Input handle, ::tensorflow::Input value, ::tensorflow::Input lengths, ::tensorflow::Input flow_in )
العقدة
::tensorflow::Node * node() const
المشغل::tensorflow::الإدخال
operator::tensorflow::Input() const
المشغل::tensorflow::الإخراج
operator::tensorflow::Output() const
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# tensorflow::ops::TensorArraySplit Class Reference\n\ntensorflow::ops::TensorArraySplit\n=================================\n\n`#include \u003cdata_flow_ops.h\u003e`\n\nSplit the data from the input value into [TensorArray](/versions/r2.1/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array) elements.\n\nSummary\n-------\n\nAssuming that `lengths` takes on values\n\n(n0, n1, ..., n(T-1)) \n\n``````mysql\n\n \n and that `value` has shape\n \n \n`````text\n(n0 + n1 + ... + n(T-1) x d0 x d1 x ...)```,\n this splits values into a /versions/r2.1/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array with T tensors.\n /versions/r2.1/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array index t will be the subtensor of values with starting position\n ```(n0 + n1 + ... + n(t-1), 0, 0, ...)\u003cbr /\u003e\n\n\n\n \n\n \n\n```\nand having size\n```\n\n \n\u003cbr /\u003e\n\n\n\n \n\u003cbr /\u003e\n\n\n\n\n````gdscript\nnt x d0 x d1 x ...```\n Arguments:\n \n- scope: A /versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope object\n\n \n- handle: The handle to a /versions/r2.1/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- value: The concatenated tensor to write to the /versions/r2.1/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- lengths: The vector of lengths, how to split the rows of value into the /versions/r2.1/api_docs/cc/class/tensorflow/ops/tensor-array#classtensorflow_1_1ops_1_1_tensor_array.\n\n \n- flow_in: A float scalar that enforces proper chaining of operations.\n\n \n\n Returns:\n \n- /versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output: A float scalar that enforces proper chaining of operations. \n\n \n\n \n\n\n \n### Constructors and Destructors\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ae33a80f5f64f1d0ce47cb9ba380ee6bb(const ::/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope & scope, ::/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input handle, ::/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input value, ::/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input lengths, ::/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input flow_in)\n \n\n \n\n\n \n\n\n \n### Public attributes\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1a6a6beee076f43e4045b8327c9a8f0be9\n \n\n \n\n ::/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1a1cf9133d6b7032ba48abeff356547a58\n \n\n \n\n /versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation\n \n\n \n\n\n \n\n\n \n### Public functions\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ad03cc93202545e0234d90faee0425ed9() const \n \n\n \n\n ::tensorflow::Node *\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ac2029be4ba96df5da32f6bd0fc3fb8b1() const \n \n\n \n\n `\n` \n`\n` \n\n\n\n #classtensorflow_1_1ops_1_1_tensor_array_split_1ab90a5c257e9a8df6209a663ade45e3fc() const \n \n\n \n\n `\n` \n`\n` \n\n\n Public attributes\n \n \n### flow_out\n\n\n \n```\n::tensorflow::Output flow_out\n```\n\n \n\n \n \n \n### operation\n\n\n \n\n\n```text\nOperation operation\n```\n\n \n\n \n Public functions\n \n \n### TensorArraySplit\n\n\n \n\n\n```gdscript\n TensorArraySplit(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input handle,\n ::tensorflow::Input value,\n ::tensorflow::Input lengths,\n ::tensorflow::Input flow_in\n)\n```\n\n \n\n \n \n \n### node\n\n\n \n\n\n```gdscript\n::tensorflow::Node * node() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Input\n\n\n \n\n\n```gdscript\n operator::tensorflow::Input() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Output\n\n\n \n\n\n```gdscript\n operator::tensorflow::Output() const \n```\n\n \n\n \n\n \n\n \n````\n`````\n``````"]]