Conozca lo último en aprendizaje automático, IA generativa y más en el
Simposio WiML 2023.
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
tensorflow :: operaciones :: AvgPool3D
#include <nn_ops.h>
Realiza un agrupamiento de promedios 3D en la entrada.
Resumen
Argumentos:
- alcance: un objeto de alcance
- entrada: Tensor de forma
[batch, depth, rows, cols, channels]
para agrupar. - ksize: tensor 1-D de longitud 5. El tamaño de la ventana para cada dimensión del tensor de entrada. Debe tener
ksize[0] = ksize[4] = 1
. - zancadas: tensor 1-D de longitud 5. Zancada de la ventana deslizante para cada dimensión de
input
. Debe tener strides[0] = strides[4] = 1
. - padding: el tipo de algoritmo de relleno que se utilizará.
Atributos opcionales (consulte Attrs
):
- data_format: El formato de datos de los datos de entrada y salida. Con el formato predeterminado "NDHWC", los datos se almacenan en el orden de: [batch, in_depth, in_height, in_width, in_channels]. Alternativamente, el formato podría ser "NCDHW", el orden de almacenamiento de datos es: [batch, in_channels, in_depth, in_height, in_width].
Devoluciones:
-
Output
: el tensor de salida agrupado promedio.
Funciones estáticas públicas |
---|
DataFormat (StringPiece x) | |
Atributos públicos
Funciones publicas
AvgPool3D
AvgPool3D(
const ::tensorflow::Scope & scope,
::tensorflow::Input input,
const gtl::ArraySlice< int > & ksize,
const gtl::ArraySlice< int > & strides,
StringPiece padding
)
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador :: tensorflow :: Salida
operator::tensorflow::Output() const
Funciones estáticas públicas
Attrs DataFormat(
StringPiece x
)
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2020-04-20 (UTC)
[null,null,["Última actualización: 2020-04-20 (UTC)"],[],[],null,["# tensorflow::ops::AvgPool3D Class Reference\n\ntensorflow::ops::AvgPool3D\n==========================\n\n`#include \u003cnn_ops.h\u003e`\n\nPerforms 3D average pooling on the input.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Shape `[batch, depth, rows, cols, channels]` tensor to pool over.\n- ksize: 1-D tensor of length 5. The size of the window for each dimension of the input tensor. Must have `ksize[0] = ksize[4] = 1`.\n- strides: 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool3-d/attrs#structtensorflow_1_1ops_1_1_avg_pool3_d_1_1_attrs)):\n\n- data_format: The data format of the input and output data. With the default format \"NDHWC\", the data is stored in the order of: \\[batch, in_depth, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCDHW\", the data storage order is: \\[batch, in_channels, in_depth, in_height, in_width\\].\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The average pooled output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [AvgPool3D](#classtensorflow_1_1ops_1_1_avg_pool3_d_1ad52fa7270df230a429102dff7f270dfb)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [AvgPool3D](#classtensorflow_1_1ops_1_1_avg_pool3_d_1a25cc864885d8a535be290334b7668495)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, const gtl::ArraySlice\u003c int \u003e & ksize, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[AvgPool3D::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool3-d/attrs#structtensorflow_1_1ops_1_1_avg_pool3_d_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_avg_pool3_d_1adb5a5628c948f83bb5e4c630cecc165e) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_avg_pool3_d_1a6c96677783666eb38f1aa8f0e8022e06) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_avg_pool3_d_1adda4d693e393a8be80546fcdd7c35bc3)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_avg_pool3_d_1a4d137ee8e20345c4e418c5b1d1d4d514)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_avg_pool3_d_1ad8f6042e68441acfb5f32682f5af5492)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_avg_pool3_d_1a9f02a15e10745fc4a9af9a7a15f32412)`(StringPiece x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool3-d/attrs#structtensorflow_1_1ops_1_1_avg_pool3_d_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::AvgPool3D::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/avg-pool3-d/attrs) | Optional attribute setters for [AvgPool3D](/versions/r2.1/api_docs/cc/class/tensorflow/ops/avg-pool3-d#classtensorflow_1_1ops_1_1_avg_pool3_d). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### AvgPool3D\n\n```gdscript\n AvgPool3D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### AvgPool3D\n\n```gdscript\n AvgPool3D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n const gtl::ArraySlice\u003c int \u003e & ksize,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const AvgPool3D::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n```"]]