Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : Remplir
#include <array_ops.h>
Crée un tenseur rempli d'une valeur scalaire.
Résumé
Cette opération crée un tenseur de forme dims
et le remplit de value
.
Par exemple:
# Output tensor has shape [2, 3].
fill([2, 3], 9) ==> [[9, 9, 9]
[9, 9, 9]]
tf.fill
diffère de tf.constant
de plusieurs manières :
-
tf.fill
ne prend en charge que le contenu scalaire, tandis que tf.constant
prend en charge les valeurs Tensor . -
tf.fill
crée un Op dans le graphe de calcul qui construit la valeur réelle du Tensor au moment de l'exécution. Cela contraste avec tf.constant
qui intègre l'intégralité du Tensor dans le graphique avec un nœud Const
. - Étant donné que
tf.fill
est évalué au moment de l'exécution du graphique, il prend en charge les formes dynamiques basées sur d'autres Tensors d'exécution, contrairement à tf.constant
.
Arguments :
- scope : un objet Scope
- intensité : 1-D. Représente la forme du tenseur de sortie.
- valeur : 0-D (scalaire). Valeur pour remplir le tenseur renvoyé.
(numpy) Équivalent à np.full
Retours :
-
Output
: Le tenseur de sortie.
Attributs publics
Fonctions publiques
nœud
::tensorflow::Node * node() const
operator::tensorflow::Input() const
opérateur :: tensorflow :: Sortie
operator::tensorflow::Output() const
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/25 (UTC).
[null,null,["Dernière mise à jour le 2025/07/25 (UTC)."],[],[],null,["# tensorflow::ops::Fill Class Reference\n\ntensorflow::ops::Fill\n=====================\n\n`#include \u003carray_ops.h\u003e`\n\nCreates a tensor filled with a scalar value.\n\nSummary\n-------\n\nThis operation creates a tensor of shape `dims` and fills it with `value`.\n\nFor example:\n\n\n```text\n# Output tensor has shape [2, 3].\nfill([2, 3], 9) ==\u003e [[9, 9, 9]\n [9, 9, 9]]\n```\n\n\u003cbr /\u003e\n\n`tf.fill` differs from `tf.constant` in a few ways:\n\n\n- `tf.fill` only supports scalar contents, whereas `tf.constant` supports [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) values.\n- `tf.fill` creates an Op in the computation graph that constructs the actual [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) value at runtime. This is in contrast to `tf.constant` which embeds the entire [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) into the graph with a `Const` node.\n- Because `tf.fill` evaluates at graph runtime, it supports dynamic shapes based on other runtime Tensors, unlike `tf.constant`.\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- dims: 1-D. Represents the shape of the output tensor.\n- value: 0-D (scalar). Value to fill the returned tensor.\n\n\u003cbr /\u003e\n\n(numpy) Equivalent to np.full\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Fill](#classtensorflow_1_1ops_1_1_fill_1a01c1c041aa66636af36c215a28cad8f8)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dims, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` value)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_fill_1ab58dad131aa0ced03a7b508cb5f17ee8) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_fill_1af59efc826ad951c4bb994ccf186b0e3c) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_fill_1a470a2e887eb44734252766d0f4759b04)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_fill_1a7eb9e821e29fbfa81a25dd5ae382ce1f)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_fill_1a952032189c0e55332094cc69e197ae06)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Fill\n\n```gdscript\n Fill(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input dims,\n ::tensorflow::Input value\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]