Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: FusedPadConv2D
#include <nn_ops.h>
Thực hiện phần đệm như một phần tiền xử lý trong quá trình tích chập.
Bản tóm tắt
Tương tự như FusedResizeAndPadConv2d, op này cho phép triển khai được tối ưu hóa trong đó giai đoạn chuyển đổi phần đệm không gian được hợp nhất với tra cứu im2col, nhưng trong trường hợp này không cần lọc song tuyến tính để thay đổi kích thước. Việc kết hợp phần đệm giúp ngăn chặn nhu cầu ghi ra các kết quả trung gian dưới dạng toàn bộ tensor, giảm áp lực bộ nhớ và chúng ta có thể đạt được một số mức tăng về độ trễ bằng cách hợp nhất các phép tính chuyển đổi. Thuộc tính data_format cho Conv2D không được op này hỗ trợ và thay vào đó, thứ tự 'NHWC' được sử dụng. Trong nội bộ, op này sử dụng một bộ đệm đầu cho mỗi biểu đồ, có nghĩa là nó sẽ chặn nếu nhiều phiên bản đang chạy song song. Điều này là do toán tử này chủ yếu là sự tối ưu hóa để giảm thiểu việc sử dụng bộ nhớ.
Lập luận:
- phạm vi: Một đối tượng Phạm vi
- đầu vào: 4-D với hình dạng
[batch, in_height, in_width, in_channels]
. - phần đệm: Ma trận hai cột chỉ định kích thước phần đệm. Số lượng hàng phải giống với thứ hạng của
input
. - bộ lọc: 4-D có hình dạng
[filter_height, filter_width, in_channels, out_channels]
. - bước tiến: 1-D có chiều dài 4. Bước tiến của cửa sổ trượt cho từng chiều của
input
. Phải theo cùng thứ tự với kích thước được chỉ định bằng định dạng. - phần đệm: Loại thuật toán đệm sẽ sử dụng.
Trả về:
Thuộc tính công khai
Chức năng công cộng
nút
::tensorflow::Node * node() const
operator::tensorflow::Input() const
toán tử::tenorflow::Đầu ra
operator::tensorflow::Output() const
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-27 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::FusedPadConv2D Class Reference\n\ntensorflow::ops::FusedPadConv2D\n===============================\n\n`#include \u003cnn_ops.h\u003e`\n\nPerforms a padding as a preprocess during a convolution.\n\nSummary\n-------\n\nSimilar to FusedResizeAndPadConv2d, this op allows for an optimized implementation where the spatial padding transformation stage is fused with the im2col lookup, but in this case without the bilinear filtering required for resizing. Fusing the padding prevents the need to write out the intermediate results as whole tensors, reducing memory pressure, and we can get some latency gains by merging the transformation calculations. The data_format attribute for [Conv2D](/versions/r2.1/api_docs/cc/class/tensorflow/ops/conv2-d#classtensorflow_1_1ops_1_1_conv2_d) isn't supported by this op, and 'NHWC' order is used instead. Internally this op uses a single per-graph scratch buffer, which means that it will block if multiple versions are being run in parallel. This is because this operator is primarily an optimization to minimize memory usage.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D with shape `[batch, in_height, in_width, in_channels]`.\n- paddings: A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of `input`.\n- filter: 4-D with shape `[filter_height, filter_width, in_channels, out_channels]`.\n- strides: 1-D of length 4. The stride of the sliding window for each dimension of `input`. Must be in the same order as the dimension specified with format.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [FusedPadConv2D](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a29433f179ebfe80f5713baf602db0fb2)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` paddings, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, StringPiece mode, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a74eadb05eed0b4ac42f88868b346c2c9) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a9b745852fc93e6ac7cad86ed8d30355d) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a834a7fdc26dccf20c023a8a8f52aa70c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a041ca6414035fd6c7c4526905e111b55)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1ab21cc1c1b746da897e2ee793cb9320a4)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### FusedPadConv2D\n\n```gdscript\n FusedPadConv2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input paddings,\n ::tensorflow::Input filter,\n StringPiece mode,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]