সেভ করা পৃষ্ঠা গুছিয়ে রাখতে 'সংগ্রহ' ব্যবহার করুন
আপনার পছন্দ অনুযায়ী কন্টেন্ট সেভ করুন ও সঠিক বিভাগে রাখুন।
টেনসরফ্লো :: অপস:: MatrixDiagV2
#include <array_ops.h>
প্রদত্ত ব্যাচ করা তির্যক মান সহ একটি ব্যাচড তির্যক টেনসর প্রদান করে।
সারাংশ
একটি ম্যাট্রিক্সের k[0]
-th থেকে k[1]
-th কর্ণ হিসাবে diagonal
বিষয়বস্তু সহ একটি টেনসর প্রদান করে, বাকি সবকিছু padding
দিয়ে প্যাড করা হয়। num_rows
এবং num_cols
আউটপুটের অন্তর্নিহিত ম্যাট্রিক্সের মাত্রা নির্দিষ্ট করে। যদি উভয়টি নির্দিষ্ট করা না থাকে, তাহলে op অনুমান করে সবচেয়ে ভিতরের ম্যাট্রিক্সটি বর্গক্ষেত্র এবং k
থেকে এর আকার এবং diagonal
ভেতরেরতম মাত্রা অনুমান করে। যদি তাদের মধ্যে শুধুমাত্র একটি নির্দিষ্ট করা হয়, op অনুমান করে যে অনির্দিষ্ট মানটি অন্যান্য মানদণ্ডের উপর ভিত্তি করে সম্ভাব্য সবচেয়ে ছোট।
ধরা যাক diagonal
r
মাত্রা আছে [I, J, ..., L, M, N]
। আউটপুট টেনসরের আকৃতির সাথে r+1
আছে [I, J, ..., L, M, num_rows, num_cols]
যখন শুধুমাত্র একটি তির্যক দেওয়া হয় ( k
হল একটি পূর্ণসংখ্যা বা k[0] == k[1]
) . অন্যথায়, এটির আকৃতির সাথে r
আছে [I, J, ..., L, num_rows, num_cols]
।
diagonal
দ্বিতীয় অন্তরতম মাত্রার দ্বিগুণ অর্থ রয়েছে। যখন k
স্কেলার বা k[0] == k[1]
, M
ব্যাচ আকারের অংশ [I, J, ..., M], এবং আউটপুট টেনসর হল:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
padding_value ; otherwise
অন্যথায়, M
একই ব্যাচের ম্যাট্রিক্সের জন্য কর্ণের সংখ্যা হিসাবে বিবেচনা করা হয় ( M = k[1]-k[0]+1
), এবং আউটপুট টেনসর হল:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
padding_value ; otherwise
যেখানে
d = n - m
,
diag_index = k[1] - d
, এবং
index_in_diag = n - max(d, 0)
।
যেমন:
# The main diagonal.
diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)
[5, 6, 7, 8]])
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4)
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]],
[[5, 0, 0, 0],
[0, 6, 0, 0],
[0, 0, 7, 0],
[0, 0, 0, 8]]]
# A superdiagonal (per batch).
diagonal = np.array([[1, 2, 3], # Input shape: (2, 3)
[4, 5, 6]])
tf.matrix_diag(diagonal, k = 1)
==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4)
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]],
[[0, 4, 0, 0],
[0, 0, 5, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3)
[4, 5, 0]],
[[6, 7, 9],
[9, 1, 0]]])
tf.matrix_diag(diagonals, k = (-1, 0))
==> [[[1, 0, 0], # Output shape: (2, 3, 3)
[4, 2, 0],
[0, 5, 3]],
[[6, 0, 0],
[9, 7, 0],
[0, 1, 9]]]
# Rectangular matrix.
diagonal = np.array([1, 2]) # Input shape: (2)
tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
==> [[0, 0, 0, 0], # Output shape: (3, 4)
[1, 0, 0, 0],
[0, 2, 0, 0]]
# Rectangular matrix with inferred num_cols and padding_value = 9.
tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
==> [[9, 9], # Output shape: (3, 2)
[1, 9],
[9, 2]]
যুক্তি:
- স্কোপ: একটি স্কোপ অবজেক্ট
- তির্যক: র্যাঙ্ক
r
, যেখানে r >= 1
- k: তির্যক অফসেট(গুলি)। ধনাত্মক মান মানে অতিকর্ণ, 0 প্রধান কর্ণকে বোঝায় এবং ঋণাত্মক মান মানে উপকর্ণ।
k
একটি একক পূর্ণসংখ্যা হতে পারে (একটি একক তির্যকের জন্য) বা একটি ম্যাট্রিক্স ব্যান্ডের নিম্ন এবং উচ্চ প্রান্তগুলি নির্দিষ্ট করে এমন এক জোড়া পূর্ণসংখ্যা হতে পারে। k[0]
অবশ্যই k[1]
এর চেয়ে বড় হবে না। - num_rows: আউটপুট ম্যাট্রিক্সের সারির সংখ্যা। যদি এটি প্রদান করা না হয়, op অনুমান করে যে আউটপুট ম্যাট্রিক্সটি একটি বর্গ ম্যাট্রিক্স এবং k থেকে ম্যাট্রিক্সের আকার এবং
diagonal
সবচেয়ে ভিতরের মাত্রা অনুমান করে। - num_cols: আউটপুট ম্যাট্রিক্সের কলামের সংখ্যা। যদি এটি প্রদান করা না হয়, op অনুমান করে যে আউটপুট ম্যাট্রিক্সটি একটি বর্গ ম্যাট্রিক্স এবং k থেকে ম্যাট্রিক্সের আকার এবং
diagonal
সবচেয়ে ভিতরের মাত্রা অনুমান করে। - padding_value: নির্দিষ্ট তির্যক ব্যান্ডের বাইরের এলাকাটি যে সংখ্যা দিয়ে পূরণ করতে হবে। ডিফল্ট 0।
রিটার্ন:
-
Output
: র্যাঙ্ক r+1
আছে যখন k
একটি পূর্ণসংখ্যা বা k[0] == k[1]
, অন্যথায় r
।
পাবলিক বৈশিষ্ট্য
পাবলিক ফাংশন
নোড
::tensorflow::Node * node() const
operator::tensorflow::Input() const
অপারেটর::টেনসরফ্লো::আউটপুট
operator::tensorflow::Output() const
অন্য কিছু উল্লেখ না করা থাকলে, এই পৃষ্ঠার কন্টেন্ট Creative Commons Attribution 4.0 License-এর অধীনে এবং কোডের নমুনাগুলি Apache 2.0 License-এর অধীনে লাইসেন্স প্রাপ্ত। আরও জানতে, Google Developers সাইট নীতি দেখুন। Java হল Oracle এবং/অথবা তার অ্যাফিলিয়েট সংস্থার রেজিস্টার্ড ট্রেডমার্ক।
2025-07-26 UTC-তে শেষবার আপডেট করা হয়েছে।
[null,null,["2025-07-26 UTC-তে শেষবার আপডেট করা হয়েছে।"],[],[],null,["# tensorflow::ops::MatrixDiagV2 Class Reference\n\ntensorflow::ops::MatrixDiagV2\n=============================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a batched diagonal tensor with given batched diagonal values.\n\nSummary\n-------\n\nReturns a tensor with the contents in `diagonal` as `k[0]`-th to `k[1]`-th diagonals of a matrix, with everything else padded with `padding`. `num_rows` and `num_cols` specify the dimension of the innermost matrix of the output. If both are not specified, the op assumes the innermost matrix is square and infers its size from `k` and the innermost dimension of `diagonal`. If only one of them is specified, the op assumes the unspecified value is the smallest possible based on other criteria.\n\nLet `diagonal` have `r` dimensions `[I, J, ..., L, M, N]`. The output tensor has rank `r+1` with shape `[I, J, ..., L, M, num_rows, num_cols]` when only one diagonal is given (`k` is an integer or `k[0] == k[1]`). Otherwise, it has rank `r` with shape `[I, J, ..., L, num_rows, num_cols]`.\n\nThe second innermost dimension of `diagonal` has double meaning. When `k` is scalar or `k[0] == k[1]`, `M` is part of the batch size \\[I, J, ..., M\\], and the output tensor is:\n\n\n```scdoc\noutput[i, j, ..., l, m, n]\n = diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper\n padding_value ; otherwise\n```\n\n\u003cbr /\u003e\n\nOtherwise, `M` is treated as the number of diagonals for the matrix in the same batch (`M = k[1]-k[0]+1`), and the output tensor is:\n\n\u003cbr /\u003e\n\n```scdoc\noutput[i, j, ..., l, m, n]\n = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] \u003c= d \u003c= k[1]\n padding_value ; otherwise\n```\nwhere `d = n - m`, `diag_index = k[1] - d`, and `index_in_diag = n - max(d, 0)`.\n\n\u003cbr /\u003e\n\nFor example:\n\n\n```scdoc\n# The main diagonal.\ndiagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)\n [5, 6, 7, 8]])\ntf.matrix_diag(diagonal) ==\u003e [[[1, 0, 0, 0], # Output shape: (2, 4, 4)\n [0, 2, 0, 0],\n [0, 0, 3, 0],\n [0, 0, 0, 4]],\n [[5, 0, 0, 0],\n [0, 6, 0, 0],\n [0, 0, 7, 0],\n [0, 0, 0, 8]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A superdiagonal (per batch).\ndiagonal = np.array([[1, 2, 3], # Input shape: (2, 3)\n [4, 5, 6]])\ntf.matrix_diag(diagonal, k = 1)\n ==\u003e [[[0, 1, 0, 0], # Output shape: (2, 4, 4)\n [0, 0, 2, 0],\n [0, 0, 0, 3],\n [0, 0, 0, 0]],\n [[0, 4, 0, 0],\n [0, 0, 5, 0],\n [0, 0, 0, 6],\n [0, 0, 0, 0]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A band of diagonals.\ndiagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3)\n [4, 5, 0]],\n [[6, 7, 9],\n [9, 1, 0]]])\ntf.matrix_diag(diagonals, k = (-1, 0))\n ==\u003e [[[1, 0, 0], # Output shape: (2, 3, 3)\n [4, 2, 0],\n [0, 5, 3]],\n [[6, 0, 0],\n [9, 7, 0],\n [0, 1, 9]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# Rectangular matrix.\ndiagonal = np.array([1, 2]) # Input shape: (2)\ntf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)\n ==\u003e [[0, 0, 0, 0], # Output shape: (3, 4)\n [1, 0, 0, 0],\n [0, 2, 0, 0]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# Rectangular matrix with inferred num_cols and padding_value = 9.\ntf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)\n ==\u003e [[9, 9], # Output shape: (3, 2)\n [1, 9],\n [9, 2]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- diagonal: Rank `r`, where `r \u003e= 1`\n- k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`.\n- num_rows: The number of rows of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from k and the innermost dimension of `diagonal`.\n- num_cols: The number of columns of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from k and the innermost dimension of `diagonal`.\n- padding_value: The number to fill the area outside the specified diagonal band with. Default is 0.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Has rank `r+1` when `k` is an integer or `k[0] == k[1]`, rank `r` otherwise.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixDiagV2](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a0f4757e436efeaed1ba2bd9690367b7f)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` diagonal, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` k, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` num_rows, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` num_cols, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` padding_value)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a09bb44acf7362d90e9b70dfaa3ebd8fd) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a180f0e2069ba614f9a8bf4593d6b322a) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a5faf264fc6c643dfc49d1d5b00828973)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a8301ec1ffa503e41034e06b9fc8dfd93)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a96f20bc6c061cadeeb30e3986311fc2c)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MatrixDiagV2\n\n```gdscript\n MatrixDiagV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input diagonal,\n ::tensorflow::Input k,\n ::tensorflow::Input num_rows,\n ::tensorflow::Input num_cols,\n ::tensorflow::Input padding_value\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]