Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : MatriceDiagV2
#include <array_ops.h>
Renvoie un tenseur diagonal par lots avec des valeurs diagonales par lots données.
Résumé
Renvoie un tenseur avec le contenu en diagonal
comme k[0]
-th à k[1]
-th diagonales d'une matrice, avec tout le reste complété par padding
. num_rows
et num_cols
spécifient la dimension de la matrice la plus interne de la sortie. Si les deux ne sont pas spécifiés, l'opération suppose que la matrice la plus interne est carrée et déduit sa taille de k
et de la dimension la plus interne de diagonal
. Si un seul d'entre eux est spécifié, l'opération suppose que la valeur non spécifiée est la plus petite possible en fonction d'autres critères.
Soit diagonal
avoir r
dimensions [I, J, ..., L, M, N]
. Le tenseur de sortie a le rang r+1
de forme [I, J, ..., L, M, num_rows, num_cols]
lorsqu'une seule diagonale est donnée ( k
est un entier ou k[0] == k[1]
) . Sinon, il a le rang r
avec la forme [I, J, ..., L, num_rows, num_cols]
.
La deuxième dimension la plus intérieure de la diagonal
a une double signification. Lorsque k
est scalaire ou k[0] == k[1]
, M
fait partie de la taille du lot [I, J, ..., M], et le tenseur de sortie est :
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper
padding_value ; otherwise
Sinon, M
est traité comme le nombre de diagonales de la matrice dans le même lot ( M = k[1]-k[0]+1
), et le tenseur de sortie est :
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] <= d <= k[1]
padding_value ; otherwise
où
d = n - m
,
diag_index = k[1] - d
et
index_in_diag = n - max(d, 0)
.
Par exemple:
# The main diagonal.
diagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)
[5, 6, 7, 8]])
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0], # Output shape: (2, 4, 4)
[0, 2, 0, 0],
[0, 0, 3, 0],
[0, 0, 0, 4]],
[[5, 0, 0, 0],
[0, 6, 0, 0],
[0, 0, 7, 0],
[0, 0, 0, 8]]]
# A superdiagonal (per batch).
diagonal = np.array([[1, 2, 3], # Input shape: (2, 3)
[4, 5, 6]])
tf.matrix_diag(diagonal, k = 1)
==> [[[0, 1, 0, 0], # Output shape: (2, 4, 4)
[0, 0, 2, 0],
[0, 0, 0, 3],
[0, 0, 0, 0]],
[[0, 4, 0, 0],
[0, 0, 5, 0],
[0, 0, 0, 6],
[0, 0, 0, 0]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3)
[4, 5, 0]],
[[6, 7, 9],
[9, 1, 0]]])
tf.matrix_diag(diagonals, k = (-1, 0))
==> [[[1, 0, 0], # Output shape: (2, 3, 3)
[4, 2, 0],
[0, 5, 3]],
[[6, 0, 0],
[9, 7, 0],
[0, 1, 9]]]
# Rectangular matrix.
diagonal = np.array([1, 2]) # Input shape: (2)
tf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)
==> [[0, 0, 0, 0], # Output shape: (3, 4)
[1, 0, 0, 0],
[0, 2, 0, 0]]
# Rectangular matrix with inferred num_cols and padding_value = 9.
tf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)
==> [[9, 9], # Output shape: (3, 2)
[1, 9],
[9, 2]]
Arguments :
- scope : un objet Scope
- diagonale : Rang
r
, où r >= 1
- k : Décalage(s) diagonal(s). Une valeur positive signifie une superdiagonale, 0 fait référence à la diagonale principale et une valeur négative signifie des sous-diagonales.
k
peut être un seul entier (pour une seule diagonale) ou une paire d'entiers spécifiant les extrémités inférieure et supérieure d'une bande matricielle. k[0]
ne doit pas être supérieur à k[1]
. - num_rows : le nombre de lignes de la matrice de sortie. Si cela n'est pas fourni, l'opération suppose que la matrice de sortie est une matrice carrée et déduit la taille de la matrice à partir de k et de la dimension la plus interne de
diagonal
. - num_cols : Le nombre de colonnes de la matrice de sortie. Si cela n'est pas fourni, l'opération suppose que la matrice de sortie est une matrice carrée et déduit la taille de la matrice à partir de k et de la dimension la plus interne de
diagonal
. - padding_value : le nombre avec lequel remplir la zone en dehors de la bande diagonale spécifiée. La valeur par défaut est 0.
Retours :
-
Output
: A le rang r+1
lorsque k
est un entier ou k[0] == k[1]
, le rang r
sinon.
Attributs publics
Fonctions publiques
nœud
::tensorflow::Node * node() const
operator::tensorflow::Input() const
opérateur :: tensorflow :: Sortie
operator::tensorflow::Output() const
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::MatrixDiagV2 Class Reference\n\ntensorflow::ops::MatrixDiagV2\n=============================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a batched diagonal tensor with given batched diagonal values.\n\nSummary\n-------\n\nReturns a tensor with the contents in `diagonal` as `k[0]`-th to `k[1]`-th diagonals of a matrix, with everything else padded with `padding`. `num_rows` and `num_cols` specify the dimension of the innermost matrix of the output. If both are not specified, the op assumes the innermost matrix is square and infers its size from `k` and the innermost dimension of `diagonal`. If only one of them is specified, the op assumes the unspecified value is the smallest possible based on other criteria.\n\nLet `diagonal` have `r` dimensions `[I, J, ..., L, M, N]`. The output tensor has rank `r+1` with shape `[I, J, ..., L, M, num_rows, num_cols]` when only one diagonal is given (`k` is an integer or `k[0] == k[1]`). Otherwise, it has rank `r` with shape `[I, J, ..., L, num_rows, num_cols]`.\n\nThe second innermost dimension of `diagonal` has double meaning. When `k` is scalar or `k[0] == k[1]`, `M` is part of the batch size \\[I, J, ..., M\\], and the output tensor is:\n\n\n```scdoc\noutput[i, j, ..., l, m, n]\n = diagonal[i, j, ..., l, n-max(d_upper, 0)] ; if n - m == d_upper\n padding_value ; otherwise\n```\n\n\u003cbr /\u003e\n\nOtherwise, `M` is treated as the number of diagonals for the matrix in the same batch (`M = k[1]-k[0]+1`), and the output tensor is:\n\n\u003cbr /\u003e\n\n```scdoc\noutput[i, j, ..., l, m, n]\n = diagonal[i, j, ..., l, diag_index, index_in_diag] ; if k[0] \u003c= d \u003c= k[1]\n padding_value ; otherwise\n```\nwhere `d = n - m`, `diag_index = k[1] - d`, and `index_in_diag = n - max(d, 0)`.\n\n\u003cbr /\u003e\n\nFor example:\n\n\n```scdoc\n# The main diagonal.\ndiagonal = np.array([[1, 2, 3, 4], # Input shape: (2, 4)\n [5, 6, 7, 8]])\ntf.matrix_diag(diagonal) ==\u003e [[[1, 0, 0, 0], # Output shape: (2, 4, 4)\n [0, 2, 0, 0],\n [0, 0, 3, 0],\n [0, 0, 0, 4]],\n [[5, 0, 0, 0],\n [0, 6, 0, 0],\n [0, 0, 7, 0],\n [0, 0, 0, 8]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A superdiagonal (per batch).\ndiagonal = np.array([[1, 2, 3], # Input shape: (2, 3)\n [4, 5, 6]])\ntf.matrix_diag(diagonal, k = 1)\n ==\u003e [[[0, 1, 0, 0], # Output shape: (2, 4, 4)\n [0, 0, 2, 0],\n [0, 0, 0, 3],\n [0, 0, 0, 0]],\n [[0, 4, 0, 0],\n [0, 0, 5, 0],\n [0, 0, 0, 6],\n [0, 0, 0, 0]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A band of diagonals.\ndiagonals = np.array([[[1, 2, 3], # Input shape: (2, 2, 3)\n [4, 5, 0]],\n [[6, 7, 9],\n [9, 1, 0]]])\ntf.matrix_diag(diagonals, k = (-1, 0))\n ==\u003e [[[1, 0, 0], # Output shape: (2, 3, 3)\n [4, 2, 0],\n [0, 5, 3]],\n [[6, 0, 0],\n [9, 7, 0],\n [0, 1, 9]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# Rectangular matrix.\ndiagonal = np.array([1, 2]) # Input shape: (2)\ntf.matrix_diag(diagonal, k = -1, num_rows = 3, num_cols = 4)\n ==\u003e [[0, 0, 0, 0], # Output shape: (3, 4)\n [1, 0, 0, 0],\n [0, 2, 0, 0]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# Rectangular matrix with inferred num_cols and padding_value = 9.\ntf.matrix_diag(diagonal, k = -1, num_rows = 3, padding_value = 9)\n ==\u003e [[9, 9], # Output shape: (3, 2)\n [1, 9],\n [9, 2]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- diagonal: Rank `r`, where `r \u003e= 1`\n- k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`.\n- num_rows: The number of rows of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from k and the innermost dimension of `diagonal`.\n- num_cols: The number of columns of the output matrix. If it is not provided, the op assumes the output matrix is a square matrix and infers the matrix size from k and the innermost dimension of `diagonal`.\n- padding_value: The number to fill the area outside the specified diagonal band with. Default is 0.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Has rank `r+1` when `k` is an integer or `k[0] == k[1]`, rank `r` otherwise.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixDiagV2](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a0f4757e436efeaed1ba2bd9690367b7f)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` diagonal, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` k, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` num_rows, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` num_cols, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` padding_value)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a09bb44acf7362d90e9b70dfaa3ebd8fd) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a180f0e2069ba614f9a8bf4593d6b322a) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a5faf264fc6c643dfc49d1d5b00828973)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a8301ec1ffa503e41034e06b9fc8dfd93)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_diag_v2_1a96f20bc6c061cadeeb30e3986311fc2c)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### MatrixDiagV2\n\n```gdscript\n MatrixDiagV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input diagonal,\n ::tensorflow::Input k,\n ::tensorflow::Input num_rows,\n ::tensorflow::Input num_cols,\n ::tensorflow::Input padding_value\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]