Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : ParseExampleV2
#include <parsing_ops.h>
Transforme un vecteur de protos tf.Example (sous forme de chaînes) en tenseurs typés.
Résumé
Arguments :
- scope : un objet Scope
- sérialisé : un scalaire ou un vecteur contenant des exemples de protos binaires sérialisés.
- noms : un tenseur contenant les noms des protos sérialisés. Correspond à 1:1 avec le tenseur
serialized
. Peut contenir, par exemple, des noms de clés de table (descriptifs) pour les protos sérialisés correspondants. Celles-ci sont purement utiles à des fins de débogage, et la présence de valeurs ici n'a aucun effet sur le résultat. Peut également être un vecteur vide si aucun nom n'est disponible. S'il n'est pas vide, ce tenseur doit avoir la même forme que "sérialisé". - sparse_keys : vecteur de chaînes. Les clés attendues dans les fonctionnalités des exemples associées à des valeurs clairsemées.
- dense_keys : Vecteur de chaînes. Les clés attendues dans les fonctionnalités des Exemples associées à des valeurs denses.
- ragged_keys : vecteur de chaînes. Les clés attendues dans les fonctionnalités des exemples associées à des valeurs irrégulières.
- dense_defaults : Une liste de Tensors (certains peuvent être vides). Correspond à 1:1 avec
dense_keys
. dense_defaults[j] fournit des valeurs par défaut lorsque la feature_map de l'exemple manque de dense_key[j]. Si un Tensor vide est fourni pour dense_defaults[j], alors la fonctionnalité dense_keys[j] est requise. Le type d'entrée est déduit de dense_defaults[j], même lorsqu'il est vide. Si dense_defaults[j] n'est pas vide et que dense_shapes[j] est entièrement défini, alors la forme de dense_defaults[j] doit correspondre à celle de dense_shapes[j]. Si dense_shapes[j] a une dimension majeure non définie (fonctionnalité dense à foulées variables), dense_defaults[j] doit contenir un seul élément : l'élément padding. - num_sparse : le nombre de clés clairsemées.
- sparse_types : une liste de types
num_sparse
; les types de données dans chaque fonctionnalité indiqués dans sparse_keys. Actuellement, ParseExample prend en charge DT_FLOAT (FloatList), DT_INT64 (Int64List) et DT_STRING (BytesList). - ragged_value_types : une liste de types
num_ragged
; les types de données dans chaque fonctionnalité donnés dans ragged_keys (où num_ragged = sparse_keys.size()
). Actuellement, ParseExample prend en charge DT_FLOAT (FloatList), DT_INT64 (Int64List) et DT_STRING (BytesList). - ragged_split_types : une liste de types
num_ragged
; les types de données de row_splits dans chaque fonctionnalité donnés dans ragged_keys (où num_ragged = sparse_keys.size()
). Peut être DT_INT32 ou DT_INT64. - dense_shapes : une liste de formes
num_dense
; les formes des données dans chaque fonctionnalité données dans dense_keys (où num_dense = dense_keys.size()
). Le nombre d'éléments dans la Feature correspondant à dense_key[j] doit toujours être égal à dense_shapes[j].NumEntries(). Si dense_shapes[j] == (D0, D1, ..., DN) alors la forme du Tensor de sortie dense_values[j] sera (|serialized|, D0, D1, ..., DN) : les sorties denses sont juste les entrées empilées par lots. Cela fonctionne pour dense_shapes[j] = (-1, D1, ..., DN). Dans ce cas, la forme du Tensor de sortie dense_values[j] sera (|serialized|, M, D1, .., DN), où M est le nombre maximum de blocs d'éléments de longueur D1 * .... * DN , dans toutes les entrées de mini-lots dans l'entrée. Toute entrée de mini-lot contenant moins de M blocs d'éléments de longueur D1 * ... * DN sera complétée avec l'élément scalaire default_value correspondant le long de la deuxième dimension.
Retours :
-
OutputList
sparse_indices -
OutputList
sparse_values -
OutputList
sparse_shapes -
OutputList
dense_values -
OutputList
ragged_values -
OutputList
ragged_row_splits
Constructeurs et Destructeurs |
---|
ParseExampleV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input serialized, :: tensorflow::Input names, :: tensorflow::Input sparse_keys, :: tensorflow::Input dense_keys, :: tensorflow::Input ragged_keys, :: tensorflow::InputList dense_defaults, int64 num_sparse, const DataTypeSlice & sparse_types, const DataTypeSlice & ragged_value_types, const DataTypeSlice & ragged_split_types, const gtl::ArraySlice< PartialTensorShape > & dense_shapes) |
Attributs publics
Fonctions publiques
ParseExampleV2
ParseExampleV2(
const ::tensorflow::Scope & scope,
::tensorflow::Input serialized,
::tensorflow::Input names,
::tensorflow::Input sparse_keys,
::tensorflow::Input dense_keys,
::tensorflow::Input ragged_keys,
::tensorflow::InputList dense_defaults,
int64 num_sparse,
const DataTypeSlice & sparse_types,
const DataTypeSlice & ragged_value_types,
const DataTypeSlice & ragged_split_types,
const gtl::ArraySlice< PartialTensorShape > & dense_shapes
)
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::ParseExampleV2 Class Reference\n\ntensorflow::ops::ParseExampleV2\n===============================\n\n`#include \u003cparsing_ops.h\u003e`\n\nTransforms a vector of tf.Example protos (as strings) into typed tensors.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized: A scalar or vector containing binary serialized Example protos.\n- names: A tensor containing the names of the serialized protos. Corresponds 1:1 with the `serialized` tensor. May contain, for example, table key (descriptive) names for the corresponding serialized protos. These are purely useful for debugging purposes, and the presence of values here has no effect on the output. May also be an empty vector if no names are available. If non-empty, this tensor must have the same shape as \"serialized\".\n- sparse_keys: Vector of strings. The keys expected in the Examples' features associated with sparse values.\n- dense_keys: Vector of strings. The keys expected in the Examples' features associated with dense values.\n- ragged_keys: Vector of strings. The keys expected in the Examples' features associated with ragged values.\n- dense_defaults: A list of Tensors (some may be empty). Corresponds 1:1 with `dense_keys`. dense_defaults\\[j\\] provides default values when the example's feature_map lacks dense_key\\[j\\]. If an empty [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) is provided for dense_defaults\\[j\\], then the Feature dense_keys\\[j\\] is required. The input type is inferred from dense_defaults\\[j\\], even when it's empty. If dense_defaults\\[j\\] is not empty, and dense_shapes\\[j\\] is fully defined, then the shape of dense_defaults\\[j\\] must match that of dense_shapes\\[j\\]. If dense_shapes\\[j\\] has an undefined major dimension (variable strides dense feature), dense_defaults\\[j\\] must contain a single element: the padding element.\n- num_sparse: The number of sparse keys.\n- sparse_types: A list of `num_sparse` types; the data types of data in each Feature given in sparse_keys. Currently the [ParseExample](/versions/r2.1/api_docs/cc/class/tensorflow/ops/parse-example#classtensorflow_1_1ops_1_1_parse_example) supports DT_FLOAT (FloatList), DT_INT64 (Int64List), and DT_STRING (BytesList).\n- ragged_value_types: A list of `num_ragged` types; the data types of data in each Feature given in ragged_keys (where `num_ragged = sparse_keys.size()`). Currently the [ParseExample](/versions/r2.1/api_docs/cc/class/tensorflow/ops/parse-example#classtensorflow_1_1ops_1_1_parse_example) supports DT_FLOAT (FloatList), DT_INT64 (Int64List), and DT_STRING (BytesList).\n- ragged_split_types: A list of `num_ragged` types; the data types of row_splits in each Feature given in ragged_keys (where `num_ragged = sparse_keys.size()`). May be DT_INT32 or DT_INT64.\n- dense_shapes: A list of `num_dense` shapes; the shapes of data in each Feature given in dense_keys (where `num_dense = dense_keys.size()`). The number of elements in the Feature corresponding to dense_key\\[j\\] must always equal dense_shapes\\[j\\].NumEntries(). If dense_shapes\\[j\\] == (D0, D1, ..., DN) then the shape of output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (\\|serialized\\|, D0, D1, ..., DN): The dense outputs are just the inputs row-stacked by batch. This works for dense_shapes\\[j\\] = (-1, D1, ..., DN). In this case the shape of the output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (\\|serialized\\|, M, D1, .., DN), where M is the maximum number of blocks of elements of length D1 \\* .... \\* DN, across all minibatch entries in the input. [Any](/versions/r2.1/api_docs/cc/class/tensorflow/ops/any#classtensorflow_1_1ops_1_1_any) minibatch entry with less than M blocks of elements of length D1 \\* ... \\* DN will be padded with the corresponding default_value scalar element along the second dimension.\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList` sparse_indices\n- `OutputList` sparse_values\n- `OutputList` sparse_shapes\n- `OutputList` dense_values\n- `OutputList` ragged_values\n- `OutputList` ragged_row_splits\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ParseExampleV2](#classtensorflow_1_1ops_1_1_parse_example_v2_1ab4e11094ad7703df99aa576d6ad67425)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` names, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sparse_keys, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dense_keys, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ragged_keys, ::`[tensorflow::InputList](/versions/r2.1/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_defaults, int64 num_sparse, const DataTypeSlice & sparse_types, const DataTypeSlice & ragged_value_types, const DataTypeSlice & ragged_split_types, const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|\n| [dense_values](#classtensorflow_1_1ops_1_1_parse_example_v2_1a470bd99f28093905ebb2729aa4cedce6) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [operation](#classtensorflow_1_1ops_1_1_parse_example_v2_1a514d8b2a197c9df22325d12a3b74a46f) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [ragged_row_splits](#classtensorflow_1_1ops_1_1_parse_example_v2_1a295efa8fb5cdb697c1ebcef3906c9e78) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [ragged_values](#classtensorflow_1_1ops_1_1_parse_example_v2_1a67d9cc60e2546f180462bf8f61299b41) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_parse_example_v2_1a0c78755e58595fadb6b7989979fbd03e) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_shapes](#classtensorflow_1_1ops_1_1_parse_example_v2_1a272ff8e836298c301eb6694d25fb070d) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_parse_example_v2_1a6b6a124a63884bcf1a02968c7caf0073) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\nPublic attributes\n-----------------\n\n### dense_values\n\n```scdoc\n::tensorflow::OutputList dense_values\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### ragged_row_splits\n\n```scdoc\n::tensorflow::OutputList ragged_row_splits\n``` \n\n### ragged_values\n\n```scdoc\n::tensorflow::OutputList ragged_values\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::OutputList sparse_indices\n``` \n\n### sparse_shapes\n\n```scdoc\n::tensorflow::OutputList sparse_shapes\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::OutputList sparse_values\n``` \n\nPublic functions\n----------------\n\n### ParseExampleV2\n\n```gdscript\n ParseExampleV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized,\n ::tensorflow::Input names,\n ::tensorflow::Input sparse_keys,\n ::tensorflow::Input dense_keys,\n ::tensorflow::Input ragged_keys,\n ::tensorflow::InputList dense_defaults,\n int64 num_sparse,\n const DataTypeSlice & sparse_types,\n const DataTypeSlice & ragged_value_types,\n const DataTypeSlice & ragged_split_types,\n const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes\n)\n```"]]