Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : QuantizedBatchNormWithGlobalNormalization
#include <nn_ops.h>
Normalisation par lots quantifiés.
Résumé
Cette opération est obsolète et sera supprimée à l’avenir. Préférez tf.nn.batch_normalization
.
Arguments :
- scope : un objet Scope
- t : Un Tenseur d'entrée 4D.
- t_min : la valeur représentée par l'entrée quantifiée la plus basse.
- t_max : la valeur représentée par l'entrée quantifiée la plus élevée.
- m : un tenseur moyen 1D dont la taille correspond à la dernière dimension de t. Il s'agit de la première sortie de tf.nn.moments, ou d'une moyenne mobile enregistrée de celle-ci.
- m_min : valeur représentée par la moyenne quantifiée la plus basse.
- m_max : la valeur représentée par la moyenne quantifiée la plus élevée.
- v : Un tenseur de variance 1D dont la taille correspond à la dernière dimension de t. Il s'agit de la deuxième sortie de tf.nn.moments, ou d'une moyenne mobile enregistrée de celle-ci.
- v_min : la valeur représentée par la variance quantifiée la plus faible.
- v_max : la valeur représentée par la variance quantifiée la plus élevée.
- bêta : un tenseur bêta 1D dont la taille correspond à la dernière dimension de t. Un décalage à ajouter au tenseur normalisé.
- beta_min : la valeur représentée par le décalage quantifié le plus bas.
- beta_max : valeur représentée par le décalage quantifié le plus élevé.
- gamma : un tenseur gamma 1D dont la taille correspond à la dernière dimension de t. Si "scale_after_normalization" est vrai, ce tenseur sera multiplié par le tenseur normalisé.
- gamma_min : La valeur représentée par le gamma quantifié le plus bas.
- gamma_max : La valeur représentée par le gamma quantifié le plus élevé.
- variance_epsilon : un petit nombre flottant pour éviter de diviser par 0.
- scale_after_normalization : un booléen indiquant si le tenseur obtenu doit être multiplié par gamma.
Retours :
Constructeurs et Destructeurs |
---|
QuantizedBatchNormWithGlobalNormalization (const :: tensorflow::Scope & scope, :: tensorflow::Input t, :: tensorflow::Input t_min, :: tensorflow::Input t_max, :: tensorflow::Input m, :: tensorflow::Input m_min, :: tensorflow::Input m_max, :: tensorflow::Input v, :: tensorflow::Input v_min, :: tensorflow::Input v_max, :: tensorflow::Input beta, :: tensorflow::Input beta_min, :: tensorflow::Input beta_max, :: tensorflow::Input gamma, :: tensorflow::Input gamma_min, :: tensorflow::Input gamma_max, DataType out_type, float variance_epsilon, bool scale_after_normalization) |
Attributs publics
Fonctions publiques
QuantizedBatchNormWithGlobalNormalization
QuantizedBatchNormWithGlobalNormalization(
const ::tensorflow::Scope & scope,
::tensorflow::Input t,
::tensorflow::Input t_min,
::tensorflow::Input t_max,
::tensorflow::Input m,
::tensorflow::Input m_min,
::tensorflow::Input m_max,
::tensorflow::Input v,
::tensorflow::Input v_min,
::tensorflow::Input v_max,
::tensorflow::Input beta,
::tensorflow::Input beta_min,
::tensorflow::Input beta_max,
::tensorflow::Input gamma,
::tensorflow::Input gamma_min,
::tensorflow::Input gamma_max,
DataType out_type,
float variance_epsilon,
bool scale_after_normalization
)
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::QuantizedBatchNormWithGlobalNormalization Class Reference\n\ntensorflow::ops::QuantizedBatchNormWithGlobalNormalization\n==========================================================\n\n`#include \u003cnn_ops.h\u003e`\n\nQuantized Batch normalization.\n\nSummary\n-------\n\nThis op is deprecated and will be removed in the future. Prefer `tf.nn.batch_normalization`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- t: A 4D input [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor).\n- t_min: The value represented by the lowest quantized input.\n- t_max: The value represented by the highest quantized input.\n- m: A 1D mean [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. This is the first output from tf.nn.moments, or a saved moving average thereof.\n- m_min: The value represented by the lowest quantized mean.\n- m_max: The value represented by the highest quantized mean.\n- v: A 1D variance [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. This is the second output from tf.nn.moments, or a saved moving average thereof.\n- v_min: The value represented by the lowest quantized variance.\n- v_max: The value represented by the highest quantized variance.\n- beta: A 1D beta [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. An offset to be added to the normalized tensor.\n- beta_min: The value represented by the lowest quantized offset.\n- beta_max: The value represented by the highest quantized offset.\n- gamma: A 1D gamma [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) with size matching the last dimension of t. If \"scale_after_normalization\" is true, this tensor will be multiplied with the normalized tensor.\n- gamma_min: The value represented by the lowest quantized gamma.\n- gamma_max: The value represented by the highest quantized gamma.\n- variance_epsilon: A small float number to avoid dividing by 0.\n- scale_after_normalization: A bool indicating whether the resulted tensor needs to be multiplied with gamma.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result_min\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) result_max\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [QuantizedBatchNormWithGlobalNormalization](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a06c79c043a3a55b798944a5ae0a0f148)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t_min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` t_max, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m_min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` m_max, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v_min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` v_max, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta_min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` beta_max, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma_min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` gamma_max, DataType out_type, float variance_epsilon, bool scale_after_normalization)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a84804acca133131cda9e9235b954f9af) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [result](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1ab4d42bdea55b03a105681930993cf3d4) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [result_max](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1aacfdd86eadc8f7972ff620b36692ef19) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [result_min](#classtensorflow_1_1ops_1_1_quantized_batch_norm_with_global_normalization_1a608925a87be94416e98c14506e98fb64) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### result\n\n```text\n::tensorflow::Output result\n``` \n\n### result_max\n\n```scdoc\n::tensorflow::Output result_max\n``` \n\n### result_min\n\n```scdoc\n::tensorflow::Output result_min\n``` \n\nPublic functions\n----------------\n\n### QuantizedBatchNormWithGlobalNormalization\n\n```gdscript\n QuantizedBatchNormWithGlobalNormalization(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input t,\n ::tensorflow::Input t_min,\n ::tensorflow::Input t_max,\n ::tensorflow::Input m,\n ::tensorflow::Input m_min,\n ::tensorflow::Input m_max,\n ::tensorflow::Input v,\n ::tensorflow::Input v_min,\n ::tensorflow::Input v_max,\n ::tensorflow::Input beta,\n ::tensorflow::Input beta_min,\n ::tensorflow::Input beta_max,\n ::tensorflow::Input gamma,\n ::tensorflow::Input gamma_min,\n ::tensorflow::Input gamma_max,\n DataType out_type,\n float variance_epsilon,\n bool scale_after_normalization\n)\n```"]]