Conozca lo último en aprendizaje automático, IA generativa y más en el
Simposio WiML 2023.
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
tensorflow :: operaciones :: SparseApplyFtrl
#include <training_ops.h>
Actualice las entradas relevantes en '* var' de acuerdo con el esquema Ftrl-proximal.
Resumen
Eso es para las filas para las que hemos graduado, actualizamos var, acum y linear de la siguiente manera: $$accum_new = accum + grad * grad$$ $$linear += grad + (accum_{new}^{-lr_{power}} - accum^{-lr_{power}} / lr * var$$ $$quadratic = 1.0 / (accum_{new}^{lr_{power}} * lr) + 2 * l2$$ $$var = (sign(linear) * l1 - linear) / quadratic\ if\ |linear| > l1\ else\ 0.0$$ $$accum = accum_{new}$$
Argumentos:
- alcance: un objeto de alcance
- var: debe ser de una variable ().
- acum: debe ser de una variable ().
- lineal: debe ser de una variable ().
- grad: El gradiente.
- índices: Un vector de índices en la primera dimensión de var y acum.
- lr: factor de escala. Debe ser un escalar.
- l1: Regularización L1. Debe ser un escalar.
- l2: Regularización L2. Debe ser un escalar.
- lr_power: factor de escala. Debe ser un escalar.
Atributos opcionales (consulte Attrs
):
- use_locking: si es
True
, la actualización de los tensores var y acumuladores estará protegida por un bloqueo; de lo contrario, el comportamiento no está definido, pero puede mostrar menos contención.
Devoluciones:
Constructores y Destructores |
---|
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power)
|
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs) |
Atributos públicos
Funciones publicas
SparseApplyFtrl
SparseApplyFtrl(
const ::tensorflow::Scope & scope,
::tensorflow::Input var,
::tensorflow::Input accum,
::tensorflow::Input linear,
::tensorflow::Input grad,
::tensorflow::Input indices,
::tensorflow::Input lr,
::tensorflow::Input l1,
::tensorflow::Input l2,
::tensorflow::Input lr_power,
const SparseApplyFtrl::Attrs & attrs
)
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador :: tensorflow :: Salida
operator::tensorflow::Output() const
Funciones estáticas públicas
UseLocking
Attrs UseLocking(
bool x
)
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2020-04-20 (UTC)
[null,null,["Última actualización: 2020-04-20 (UTC)"],[],[],null,["# tensorflow::ops::SparseApplyFtrl Class Reference\n\ntensorflow::ops::SparseApplyFtrl\n================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate relevant entries in '\\*var' according to the Ftrl-proximal scheme.\n\nSummary\n-------\n\nThat is for rows we have grad for, we update var, accum and linear as follows: $$accum_new = accum + grad \\* grad$$ $$linear += grad + (accum_{new}\\^{-lr_{power}} - accum\\^{-lr_{power}} / lr \\* var$$ $$quadratic = 1.0 / (accum_{new}\\^{lr_{power}} \\* lr) + 2 \\* l2$$ $$var = (sign(linear) \\* l1 - linear) / quadratic\\\\ if\\\\ \\|linear\\| \\\u003e l1\\\\ else\\\\ 0.0$$ $$accum = accum_{new}$$\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- accum: Should be from a Variable().\n- linear: Should be from a Variable().\n- grad: The gradient.\n- indices: A vector of indices into the first dimension of var and accum.\n- lr: Scaling factor. Must be a scalar.\n- l1: L1 regularization. Must be a scalar.\n- l2: L2 regularization. Must be a scalar.\n- lr_power: Scaling factor. Must be a scalar.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl/attrs#structtensorflow_1_1ops_1_1_sparse_apply_ftrl_1_1_attrs)):\n\n- use_locking: If `True`, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Same as \"var\".\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseApplyFtrl](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1acfbd35749a971ae408ba24c0bb56facd)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` linear, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l1, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr_power)` ||\n| [SparseApplyFtrl](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1ae80720b9dac0b6801255f556bd27e249)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` linear, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l1, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` l2, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr_power, const `[SparseApplyFtrl::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl/attrs#structtensorflow_1_1ops_1_1_sparse_apply_ftrl_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1ac97a954bbe52219dcd24e48de02f37e2) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [out](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1aade91702a26588081047940b922727e9) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1acd3ec55f3b5d70e30f21395166e3c638)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1afa8bb71a8583497722ad2240f94c157f)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1a5964fb493100ead822e39ca5e2ed2710)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_sparse_apply_ftrl_1aa19ce04694959f2590e9a0286d0ff8b9)`(bool x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl/attrs#structtensorflow_1_1ops_1_1_sparse_apply_ftrl_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::SparseApplyFtrl::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-apply-ftrl/attrs) | Optional attribute setters for [SparseApplyFtrl](/versions/r2.1/api_docs/cc/class/tensorflow/ops/sparse-apply-ftrl#classtensorflow_1_1ops_1_1_sparse_apply_ftrl). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### out\n\n```text\n::tensorflow::Output out\n``` \n\nPublic functions\n----------------\n\n### SparseApplyFtrl\n\n```gdscript\n SparseApplyFtrl(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input linear,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n ::tensorflow::Input lr,\n ::tensorflow::Input l1,\n ::tensorflow::Input l2,\n ::tensorflow::Input lr_power\n)\n``` \n\n### SparseApplyFtrl\n\n```gdscript\n SparseApplyFtrl(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input linear,\n ::tensorflow::Input grad,\n ::tensorflow::Input indices,\n ::tensorflow::Input lr,\n ::tensorflow::Input l1,\n ::tensorflow::Input l2,\n ::tensorflow::Input lr_power,\n const SparseApplyFtrl::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]