Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : SparseRéorganiser
#include <sparse_ops.h>
Réorganise un SparseTensor dans l'ordre canonique des lignes principales.
Résumé
Notez que par convention, toutes les opérations clairsemées préservent l'ordre canonique selon un nombre de dimension croissant. Le seul moment où l'ordre peut être violé est lors de la manipulation manuelle des indices et des vecteurs de valeurs pour ajouter des entrées.
La réorganisation n’affecte pas la forme du SparseTensor.
Si le tenseur a un rang R
et N
valeurs non vides, input_indices
a une forme [N, R]
, input_values a une longueur N
et input_shape a une longueur R
.
Arguments :
- scope : un objet Scope
- input_indices : 2-D. Matrice
N x R
avec les indices de valeurs non vides dans un SparseTensor, éventuellement pas dans l'ordre canonique. - valeurs_d'entrée : 1-D.
N
valeurs non vides correspondant à input_indices
. - input_shape : 1-D. Forme du SparseTensor d’entrée.
Retours :
-
Output
Output_indices : 2-D. Matrice N x R
avec les mêmes indices que input_indices, mais dans l'ordre canonique des lignes principales. -
Output
valeurs_de_sortie : 1-D. N
valeurs non vides correspondant aux output_indices
.
Attributs publics
Fonctions publiques
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::SparseReorder Class Reference\n\ntensorflow::ops::SparseReorder\n==============================\n\n`#include \u003csparse_ops.h\u003e`\n\nReorders a SparseTensor into the canonical, row-major ordering.\n\nSummary\n-------\n\nNote that by convention, all sparse ops preserve the canonical ordering along increasing dimension number. The only time ordering can be violated is during manual manipulation of the indices and values vectors to add entries.\n\nReordering does not affect the shape of the SparseTensor.\n\nIf the tensor has rank `R` and `N` non-empty values, `input_indices` has shape `[N, R]`, input_values has length `N`, and input_shape has length `R`.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input_indices: 2-D. `N x R` matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering.\n- input_values: 1-D. `N` non-empty values corresponding to `input_indices`.\n- input_shape: 1-D. Shape of the input SparseTensor.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_indices: 2-D. `N x R` matrix with the same indices as input_indices, but in canonical row-major ordering.\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) output_values: 1-D. `N` non-empty values corresponding to `output_indices`.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseReorder](#classtensorflow_1_1ops_1_1_sparse_reorder_1aafcce71e6de3ad9b8ce9618fe3b636a0)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_values, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_shape)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_reorder_1adbdca22d516880fc4093b79caf22bad3) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output_indices](#classtensorflow_1_1ops_1_1_sparse_reorder_1af583efc1f49452eefa81d966158fd3b6) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [output_values](#classtensorflow_1_1ops_1_1_sparse_reorder_1ad573d2b883ff9fa37df6b1ae4bc4ec18) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output_indices\n\n```scdoc\n::tensorflow::Output output_indices\n``` \n\n### output_values\n\n```scdoc\n::tensorflow::Output output_values\n``` \n\nPublic functions\n----------------\n\n### SparseReorder\n\n```gdscript\n SparseReorder(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_indices,\n ::tensorflow::Input input_values,\n ::tensorflow::Input input_shape\n)\n```"]]