Conozca lo último en aprendizaje automático, IA generativa y más en el
Simposio WiML 2023.
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
tensorflow :: operaciones :: SparseTensorDenseMatMul
#include <sparse_ops.h>
Multiplique SparseTensor (de rango 2) "A" por la matriz densa "B".
Resumen
No se realiza ninguna verificación de validez en los índices de A. Sin embargo, se recomienda el siguiente formato de entrada para un comportamiento óptimo:
if adjoint_a == false: A debe clasificarse en orden lexicográficamente creciente. Utilice SparseReorder si no está seguro. if adjoint_a == true: A debe ordenarse en orden de dimensión creciente 1 (es decir, orden "columna principal" en lugar de orden "fila principal").
Argumentos:
- alcance: un objeto de alcance
- a_indices: 2-D. Los
indices
de la SparseTensor
, tamaño [nnz, 2]
. - a_valores: 1-D. Los
values
del SparseTensor
, tamaño [nnz]
. - a_forma: 1-D. La
shape
del SparseTensor
, tamaño [2]
Vector. - b: 2-D. Una matriz densa.
Atributos opcionales (consulte Attrs
):
- adjoint_a: Usa el adjunto de A en la matriz multiplica. Si A es complejo, se transpone (conj (A)). De lo contrario, se transpone (A).
- adjoint_b: Usa el adjunto de B en la matriz multiplicar. Si B es complejo, se transpone (conj (B)). De lo contrario, se transpone (B).
Devoluciones:
-
Output
: el tensor del producto.
Atributos públicos
Funciones publicas
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador :: tensorflow :: Salida
operator::tensorflow::Output() const
Funciones estáticas públicas
AdjointA
Attrs AdjointA(
bool x
)
AdjointB
Attrs AdjointB(
bool x
)
Salvo que se indique lo contrario, el contenido de esta página está sujeto a la licencia Atribución 4.0 de Creative Commons, y los ejemplos de código están sujetos a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2020-04-20 (UTC)
[null,null,["Última actualización: 2020-04-20 (UTC)"],[],[],null,["# tensorflow::ops::SparseTensorDenseMatMul Class Reference\n\ntensorflow::ops::SparseTensorDenseMatMul\n========================================\n\n`#include \u003csparse_ops.h\u003e`\n\n[Multiply](/versions/r2.1/api_docs/cc/class/tensorflow/ops/multiply#classtensorflow_1_1ops_1_1_multiply) SparseTensor (of rank 2) \"A\" by dense matrix \"B\".\n\nSummary\n-------\n\nNo validity checking is performed on the indices of A. However, the following input format is recommended for optimal behavior:\n\nif adjoint_a == false: A should be sorted in lexicographically increasing order. Use [SparseReorder](/versions/r2.1/api_docs/cc/class/tensorflow/ops/sparse-reorder#classtensorflow_1_1ops_1_1_sparse_reorder) if you're not sure. if adjoint_a == true: A should be sorted in order of increasing dimension 1 (i.e., \"column major\" order instead of \"row major\" order).\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- a_indices: 2-D. The `indices` of the `SparseTensor`, size `[nnz, 2]` Matrix.\n- a_values: 1-D. The `values` of the `SparseTensor`, size `[nnz]` Vector.\n- a_shape: 1-D. The `shape` of the `SparseTensor`, size `[2]` Vector.\n- b: 2-D. A dense Matrix.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-tensor-dense-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1_1_attrs)):\n\n- adjoint_a: Use the adjoint of A in the matrix multiply. If A is complex, this is transpose(conj(A)). Otherwise it's transpose(A).\n- adjoint_b: Use the adjoint of B in the matrix multiply. If B is complex, this is transpose(conj(B)). Otherwise it's transpose(B).\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The product tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseTensorDenseMatMul](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1adf1f689b8b8d0d72c059efbea5fb9cac)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_values, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_shape, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b)` ||\n| [SparseTensorDenseMatMul](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a3643c83b6940a54319e70b0bc094f948)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_values, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_shape, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b, const `[SparseTensorDenseMatMul::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-tensor-dense-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a5213c7ac11f10109585773e8fe2cd041) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [product](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a8895f99af9af5585d8bd937b817bb0ae) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a3c65317b9c1886136c7de4e03ec51641)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1ac394c138be85d3c36ae20b40f867d72c)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a888b8f4b59aea6d4ff0bdeeba2ad5338)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [AdjointA](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a972ac5b3a5538d477e96e8d1d857ccca)`(bool x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-tensor-dense-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1_1_attrs) |\n| [AdjointB](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1ac3e772adcb84c991bdd702ba2f6f7b98)`(bool x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-tensor-dense-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::SparseTensorDenseMatMul::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-tensor-dense-mat-mul/attrs) | Optional attribute setters for [SparseTensorDenseMatMul](/versions/r2.1/api_docs/cc/class/tensorflow/ops/sparse-tensor-dense-mat-mul#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### product\n\n```text\n::tensorflow::Output product\n``` \n\nPublic functions\n----------------\n\n### SparseTensorDenseMatMul\n\n```gdscript\n SparseTensorDenseMatMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a_indices,\n ::tensorflow::Input a_values,\n ::tensorflow::Input a_shape,\n ::tensorflow::Input b\n)\n``` \n\n### SparseTensorDenseMatMul\n\n```gdscript\n SparseTensorDenseMatMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a_indices,\n ::tensorflow::Input a_values,\n ::tensorflow::Input a_shape,\n ::tensorflow::Input b,\n const SparseTensorDenseMatMul::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### AdjointA\n\n```text\nAttrs AdjointA(\n bool x\n)\n``` \n\n### AdjointB\n\n```text\nAttrs AdjointB(\n bool x\n)\n```"]]