Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
flux tensoriel : : opérations : : LotVersEspace
#include <array_ops.h>
BatchToSpace pour les tenseurs 4-D de type T.
Résumé
Il s'agit d'une version héritée du BatchToSpaceND plus général.
Réorganise (permute) les données du lot en blocs de données spatiales, suivi d'un recadrage. Il s'agit de la transformation inverse de SpaceToBatch. Plus précisément, cette opération génère une copie du tenseur d'entrée où les valeurs de la dimension batch
sont déplacées dans des blocs spatiaux vers les dimensions height
et width
, suivies d'un recadrage le long des dimensions height
et width
.
Arguments :
- scope : un objet Scope
- entrée : tenseur 4D avec forme
[batch*block_size*block_size, height_pad/block_size, width_pad/block_size, depth]
. Notez que la taille du lot du tenseur d'entrée doit être divisible par block_size * block_size
. - cultures : tenseur 2D d'entiers non négatifs de forme
[2, 2]
. Il spécifie le nombre d'éléments à recadrer à partir du résultat intermédiaire dans les dimensions spatiales, comme suit : crops = [[crop_top, crop_bottom], [crop_left, crop_right]]
Retours :
-
Output
: 4-D avec forme [batch, height, width, depth]
, où : height = height_pad - crop_top - crop_bottom
width = width_pad - crop_left - crop_right
L'attr block_size
doit être supérieur à un. Il indique la taille du bloc.
Quelques exemples :
(1) Pour l'entrée suivante de shape [4, 1, 1, 1]
et block_size de 2 :
[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]
Le tenseur de sortie a la forme [1, 2, 2, 1]
et la valeur :
x = [[[[1], [2]], [[3], [4]]]]
(2) Pour l'entrée suivante de shape [4, 1, 1, 3]
et block_size de 2 :
[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]
Le tenseur de sortie a la forme [1, 2, 2, 3]
et la valeur :
x = [[[[1, 2, 3], [4, 5, 6]],
[[7, 8, 9], [10, 11, 12]]]]
(3) Pour l'entrée suivante de shape [4, 2, 2, 1]
et block_size de 2 :
x = [[[[1], [3]], [[9], [11]]],
[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]
Le tenseur de sortie a la forme [1, 4, 4, 1]
et la valeur :
x = [[[[1], [2], [3], [4]],
[[5], [6], [7], [8]],
[[9], [10], [11], [12]],
[[13], [14], [15], [16]]]]
(4) Pour l'entrée suivante de shape [8, 1, 2, 1]
et block_size de 2 :
x = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]],
[[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]]
Le tenseur de sortie a la forme [2, 2, 4, 1]
et la valeur :
x = [[[[1], [3]], [[5], [7]]],
[[[2], [4]], [[10], [12]]],
[[[5], [7]], [[13], [15]]],
[[[6], [8]], [[14], [16]]]]
Attributs publics
Fonctions publiques
nœud
::tensorflow::Node * node() const
operator::tensorflow::Input() const
opérateur :: tensorflow :: Sortie
operator::tensorflow::Output() const
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::BatchToSpace Class Reference\n\ntensorflow::ops::BatchToSpace\n=============================\n\n`#include \u003carray_ops.h\u003e`\n\n[BatchToSpace](/versions/r2.1/api_docs/cc/class/tensorflow/ops/batch-to-space#classtensorflow_1_1ops_1_1_batch_to_space) for 4-D tensors of type T.\n\nSummary\n-------\n\nThis is a legacy version of the more general [BatchToSpaceND](/versions/r2.1/api_docs/cc/class/tensorflow/ops/batch-to-space-n-d#classtensorflow_1_1ops_1_1_batch_to_space_n_d).\n\nRearranges (permutes) data from batch into blocks of spatial data, followed by cropping. This is the reverse transformation of SpaceToBatch. More specifically, this op outputs a copy of the input tensor where values from the `batch` dimension are moved in spatial blocks to the `height` and `width` dimensions, followed by cropping along the `height` and `width` dimensions.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D tensor with shape `[batch*block_size*block_size, height_pad/block_size, width_pad/block_size, depth]`. Note that the batch size of the input tensor must be divisible by `block_size * block_size`.\n- crops: 2-D tensor of non-negative integers with shape `[2, 2]`. It specifies how many elements to crop from the intermediate result across the spatial dimensions as follows: \n\n ```scdoc\n crops = [[crop_top, crop_bottom], [crop_left, crop_right]]\n ```\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape `[batch, height, width, depth]`, where: \n\n ```scdoc\n height = height_pad - crop_top - crop_bottom\n width = width_pad - crop_left - crop_right\n ```\n\n\u003cbr /\u003e\n\nThe attr `block_size` must be greater than one. It indicates the block size.\n\nSome examples:\n\n(1) For the following input of shape `[4, 1, 1, 1]` and block_size of 2:\n\n\n```text\n[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]\n```\n\n\u003cbr /\u003e\n\nThe output tensor has shape `[1, 2, 2, 1]` and value:\n\n\n```text\nx = [[[[1], [2]], [[3], [4]]]]\n```\n\n\u003cbr /\u003e\n\n(2) For the following input of shape `[4, 1, 1, 3]` and block_size of 2:\n\n\n```text\n[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]\n```\n\n\u003cbr /\u003e\n\nThe output tensor has shape `[1, 2, 2, 3]` and value:\n\n\n```text\nx = [[[[1, 2, 3], [4, 5, 6]],\n [[7, 8, 9], [10, 11, 12]]]]\n```\n\n\u003cbr /\u003e\n\n(3) For the following input of shape `[4, 2, 2, 1]` and block_size of 2:\n\n\n```text\nx = [[[[1], [3]], [[9], [11]]],\n [[[2], [4]], [[10], [12]]],\n [[[5], [7]], [[13], [15]]],\n [[[6], [8]], [[14], [16]]]]\n```\n\n\u003cbr /\u003e\n\nThe output tensor has shape `[1, 4, 4, 1]` and value:\n\n\n```text\nx = [[[[1], [2], [3], [4]],\n [[5], [6], [7], [8]],\n [[9], [10], [11], [12]],\n [[13], [14], [15], [16]]]]\n```\n\n\u003cbr /\u003e\n\n(4) For the following input of shape `[8, 1, 2, 1]` and block_size of 2:\n\n\n```text\nx = [[[[1], [3]]], [[[9], [11]]], [[[2], [4]]], [[[10], [12]]],\n [[[5], [7]]], [[[13], [15]]], [[[6], [8]]], [[[14], [16]]]]\n```\n\n\u003cbr /\u003e\n\nThe output tensor has shape `[2, 2, 4, 1]` and value:\n\n\n```text\nx = [[[[1], [3]], [[5], [7]]],\n [[[2], [4]], [[10], [12]]],\n [[[5], [7]], [[13], [15]]],\n [[[6], [8]], [[14], [16]]]]\n```\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [BatchToSpace](#classtensorflow_1_1ops_1_1_batch_to_space_1a813bf5c031d4af21a394ba903c8dd8e7)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` crops, int64 block_size)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_batch_to_space_1a4f9b292d9339c4c44142a6dcec013410) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_batch_to_space_1aacc62122ef498fc3a9ee89afdbcc6b74) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_batch_to_space_1a54c1c787b320c2f52099bc7bc02a85ed)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_batch_to_space_1a23f9170b61d8e17feb37f1615a383de2)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_batch_to_space_1a6e84c3b9b55d05ad30e6bcf376278c1d)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### BatchToSpace\n\n```gdscript\n BatchToSpace(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input crops,\n int64 block_size\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]