Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
#include <nn_ops.h>
Calcule les gradients de convolution en profondeur par rapport à l'entrée.
Résumé
Arguments :
- scope : un objet Scope
- input_sizes : un vecteur entier représentant la forme de
input
, basé sur data_format
. Par exemple, si data_format
est « NHWC », alors input
est un tenseur 4D [batch, height, width, channels]
. - filtre : 4-D avec forme
[filter_height, filter_width, in_channels, depthwise_multiplier]
. - out_backprop : 4-D avec une forme basée sur
data_format
. Par exemple, si data_format
est 'NHWC', alors la forme out_backprop est [batch, out_height, out_width, out_channels]
. Dégradés par rapport à la sortie de la convolution. - foulées : La foulée de la fenêtre glissante pour chaque dimension de l'entrée de la convolution.
- padding : Le type d’algorithme de remplissage à utiliser.
Attributs facultatifs (voir Attrs
) :
- data_format : spécifiez le format de données des données d'entrée et de sortie. Avec le format par défaut « NHWC », les données sont stockées dans l'ordre : [lot, hauteur, largeur, canaux]. Alternativement, le format pourrait être « NCHW », l'ordre de stockage des données étant : [lot, canaux, hauteur, largeur].
- dilatations : tenseur 1-D de longueur 4. Le facteur de dilatation pour chaque dimension d'
input
. Si défini sur k > 1, il y aura k-1 cellules ignorées entre chaque élément de filtre sur cette dimension. L'ordre des dimensions est déterminé par la valeur de data_format
, voir ci-dessus pour plus de détails. Les dilatations dans les dimensions du lot et de la profondeur doivent être de 1.
Retours :
-
Output
: 4-D avec forme selon data_format
. Par exemple, si data_format
est 'NHWC', la forme de sortie est [batch, in_height, in_width, in_channels]
. Dégradé par rapport à l'entrée de la convolution.
Constructeurs et Destructeurs |
---|
DepthwiseConv2dNativeBackpropInput (const :: tensorflow::Scope & scope, :: tensorflow::Input input_sizes, :: tensorflow::Input filter, :: tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding)
|
DepthwiseConv2dNativeBackpropInput (const :: tensorflow::Scope & scope, :: tensorflow::Input input_sizes, :: tensorflow::Input filter, :: tensorflow::Input out_backprop, const gtl::ArraySlice< int > & strides, StringPiece padding, const DepthwiseConv2dNativeBackpropInput::Attrs & attrs) |
Fonctions statiques publiques |
---|
DataFormat (StringPiece x) | |
Dilations (const gtl::ArraySlice< int > & x) | |
Attributs publics
Fonctions publiques
Fonctions statiques publiques
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
Dernière mise à jour le 2025/07/26 (UTC).
[null,null,["Dernière mise à jour le 2025/07/26 (UTC)."],[],[],null,["# tensorflow::ops::DepthwiseConv2dNativeBackpropInput Class Reference\n\ntensorflow::ops::DepthwiseConv2dNativeBackpropInput\n===================================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes the gradients of depthwise convolution with respect to the input.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input_sizes: An integer vector representing the shape of `input`, based on `data_format`. For example, if `data_format` is 'NHWC' then `input` is a 4-D `[batch, height, width, channels]` tensor.\n- filter: 4-D with shape `[filter_height, filter_width, in_channels, depthwise_multiplier]`.\n- out_backprop: 4-D with shape based on `data_format`. For example, if `data_format` is 'NHWC' then out_backprop shape is `[batch, out_height, out_width, out_channels]`. Gradients w.r.t. the output of the convolution.\n- strides: The stride of the sliding window for each dimension of the input of the convolution.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/depthwise-conv2d-native-backprop-input/attrs#structtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1_1_attrs)):\n\n- data_format: Specify the data format of the input and output data. With the default format \"NHWC\", the data is stored in the order of: \\[batch, height, width, channels\\]. Alternatively, the format could be \"NCHW\", the data storage order of: \\[batch, channels, height, width\\].\n- dilations: 1-D tensor of length 4. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): 4-D with shape according to `data_format`. For example, if `data_format` is 'NHWC', output shape is `[batch, in_height, in_width, in_channels]`. Gradient w.r.t. the input of the convolution.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [DepthwiseConv2dNativeBackpropInput](#classtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1a44860b426baf7a003c44728e835f9d05)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_sizes, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [DepthwiseConv2dNativeBackpropInput](#classtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1a014c3bb2ee403a82ec24f10992c7b580)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input_sizes, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` out_backprop, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[DepthwiseConv2dNativeBackpropInput::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/depthwise-conv2d-native-backprop-input/attrs#structtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|--------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1a66a4628fc7014482be2512ecff5a7f06) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1a024ccdda3b9ee57913c71eb5dae1929c) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1a6e062166cae2aa251281f02dcec6154c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1a4d40006ebcb3defcaf1f2e6e469516d9)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1af4f0b912eeeefe1eecf1c33eb20dd4b4)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1a3120c51e47ec70855e85f50c57743e34)`(StringPiece x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/depthwise-conv2d-native-backprop-input/attrs#structtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1_1_attrs) |\n| [Dilations](#classtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1a94c81fcd8b2ef27c98cec5ec75a8819b)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/depthwise-conv2d-native-backprop-input/attrs#structtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input_1_1_attrs) |\n\n| ### Structs ||\n|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::DepthwiseConv2dNativeBackpropInput::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/depthwise-conv2d-native-backprop-input/attrs) | Optional attribute setters for [DepthwiseConv2dNativeBackpropInput](/versions/r2.1/api_docs/cc/class/tensorflow/ops/depthwise-conv2d-native-backprop-input#classtensorflow_1_1ops_1_1_depthwise_conv2d_native_backprop_input). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### DepthwiseConv2dNativeBackpropInput\n\n```gdscript\n DepthwiseConv2dNativeBackpropInput(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_sizes,\n ::tensorflow::Input filter,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### DepthwiseConv2dNativeBackpropInput\n\n```gdscript\n DepthwiseConv2dNativeBackpropInput(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input_sizes,\n ::tensorflow::Input filter,\n ::tensorflow::Input out_backprop,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const DepthwiseConv2dNativeBackpropInput::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n``` \n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n```"]]