Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: FakeQuantWithMinMaxVarsPerChannel
#include <array_ops.h>
Định lượng giả tensor 'đầu vào' thuộc loại float và một trong các hình dạng: [d]
,.
Bản tóm tắt
[b, d]
[b, h, w, d]
thông qua các float trên mỗi kênh có hình dạng min
và max
[d]
đến tensor 'đầu ra' có hình dạng giống như inputs
.
[min; max]
xác định phạm vi kẹp cho dữ liệu inputs
. các giá trị inputs
được lượng tử hóa thành phạm vi lượng tử hóa ( [0; 2^num_bits - 1]
khi narrow_range
là sai và [1; 2^num_bits - 1]
khi nó đúng), sau đó khử lượng tử hóa và xuất ra dưới dạng float trong [min; max]
khoảng [min; max]
num_bits
là độ rộng bit của lượng tử hóa; từ 2 đến 16, bao gồm.
Trước khi lượng tử hóa, các giá trị min
và max
được điều chỉnh theo logic sau. Nên có min <= 0 <= max
. Nếu 0
không nằm trong phạm vi giá trị, hành vi có thể không mong muốn: Nếu 0 < min < max
: min_adj = 0
và max_adj = max - min
. Nếu min < max < 0
: min_adj = min - max
và max_adj = 0
. Nếu min <= 0 <= max
: scale = (max - min) / (2^num_bits - 1)
, min_adj = scale * round(min / scale)
và max_adj = max + min_adj - min
.
Hoạt động này có độ dốc và do đó cho phép đào tạo các giá trị min
và max
.
Lập luận:
Trả về:
Thuộc tính công khai
Chức năng công cộng
nút
::tensorflow::Node * node() const
operator::tensorflow::Input() const
toán tử::tenorflow::Đầu ra
operator::tensorflow::Output() const
Các hàm tĩnh công khai
Phạm vi hẹp
Attrs NarrowRange(
bool x
)
NumBits
Attrs NumBits(
int64 x
)
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-25 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::FakeQuantWithMinMaxVarsPerChannel Class Reference\n\ntensorflow::ops::FakeQuantWithMinMaxVarsPerChannel\n==================================================\n\n`#include \u003carray_ops.h\u003e`\n\nFake-quantize the 'inputs' tensor of type float and one of the shapes: `[d]`,.\n\nSummary\n-------\n\n`[b, d]``[b, h, w, d]` via per-channel floats `min` and `max` of shape `[d]` to 'outputs' tensor of same shape as `inputs`.\n\n`[min; max]` define the clamping range for the `inputs` data. `inputs` values are quantized into the quantization range (`[0; 2^num_bits - 1]` when `narrow_range` is false and `[1; 2^num_bits - 1]` when it is true) and then de-quantized and output as floats in `[min; max]` interval. `num_bits` is the bitwidth of the quantization; between 2 and 16, inclusive.\n\nBefore quantization, `min` and `max` values are adjusted with the following logic. It is suggested to have `min \u003c= 0 \u003c= max`. If `0` is not in the range of values, the behavior can be unexpected: If `0 \u003c min \u003c max`: `min_adj = 0` and `max_adj = max - min`. If `min \u003c max \u003c 0`: `min_adj = min - max` and `max_adj = 0`. If `min \u003c= 0 \u003c= max`: `scale = (max - min) / (2^num_bits - 1)`, `min_adj = scale * round(min / scale)` and `max_adj = max + min_adj - min`.\n\nThis operation has a gradient and thus allows for training `min` and `max` values.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The outputs tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [FakeQuantWithMinMaxVarsPerChannel](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1a6030177a230ce0707cc84d79780582a9)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` inputs, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max)` ||\n| [FakeQuantWithMinMaxVarsPerChannel](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1a757ed99cef8d6918b36881c63b277e37)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` inputs, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` min, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` max, const `[FakeQuantWithMinMaxVarsPerChannel::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/fake-quant-with-min-max-vars-per-channel/attrs#structtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1aa47fa159b050ba6248ed92fab3b37c71) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [outputs](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1a045da04027810b223dfcd856f1a5aeb6) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1a8b5095141e6cd70ed955461ded03fed9)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1ac20c09de7bf22ed92c3c4e8779c91731)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1a1e190c4077dd2fc0e08d472ac85d044e)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [NarrowRange](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1a8988bcb74e45c0d5741dc23d48ff4218)`(bool x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/fake-quant-with-min-max-vars-per-channel/attrs#structtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1_1_attrs) |\n| [NumBits](#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1a8e692f7bad00eea0472c6e277b38ca89)`(int64 x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/fake-quant-with-min-max-vars-per-channel/attrs#structtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::FakeQuantWithMinMaxVarsPerChannel::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/fake-quant-with-min-max-vars-per-channel/attrs) | Optional attribute setters for [FakeQuantWithMinMaxVarsPerChannel](/versions/r2.1/api_docs/cc/class/tensorflow/ops/fake-quant-with-min-max-vars-per-channel#classtensorflow_1_1ops_1_1_fake_quant_with_min_max_vars_per_channel). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### outputs\n\n```text\n::tensorflow::Output outputs\n``` \n\nPublic functions\n----------------\n\n### FakeQuantWithMinMaxVarsPerChannel\n\n```gdscript\n FakeQuantWithMinMaxVarsPerChannel(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input inputs,\n ::tensorflow::Input min,\n ::tensorflow::Input max\n)\n``` \n\n### FakeQuantWithMinMaxVarsPerChannel\n\n```gdscript\n FakeQuantWithMinMaxVarsPerChannel(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input inputs,\n ::tensorflow::Input min,\n ::tensorflow::Input max,\n const FakeQuantWithMinMaxVarsPerChannel::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### NarrowRange\n\n```text\nAttrs NarrowRange(\n bool x\n)\n``` \n\n### NumBits\n\n```text\nAttrs NumBits(\n int64 x\n)\n```"]]