Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: Riempire
#include <array_ops.h>
Crea un tensore riempito con un valore scalare.
Riepilogo
Questa operazione crea un tensore di forma dims
e lo riempie di value
.
Per esempio:
# Output tensor has shape [2, 3].
fill([2, 3], 9) ==> [[9, 9, 9]
[9, 9, 9]]
tf.fill
differisce da tf.constant
in alcuni modi:
-
tf.fill
supporta solo contenuti scalari, mentre tf.constant
supporta valori tensoriali . -
tf.fill
crea un Op nel grafico di calcolo che costruisce il valore effettivo del tensore in fase di esecuzione. Ciò è in contrasto con tf.constant
che incorpora l'intero Tensore nel grafico con un nodo Const
. - Poiché
tf.fill
valuta in fase di esecuzione del grafico, supporta forme dinamiche basate su altri tensori di runtime, a differenza di tf.constant
.
Argomenti:
- scope: un oggetto Scope
- attenua: 1-D. Rappresenta la forma del tensore di uscita.
- valore: 0-D (scalare). Valore per riempire il tensore restituito.
(numpy) Equivalente a np.full
Resi:
-
Output
: il tensore di uscita.
Attributi pubblici
Funzioni pubbliche
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatore::tensorflow::Output
operator::tensorflow::Output() const
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-25 UTC.
[null,null,["Ultimo aggiornamento 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::Fill Class Reference\n\ntensorflow::ops::Fill\n=====================\n\n`#include \u003carray_ops.h\u003e`\n\nCreates a tensor filled with a scalar value.\n\nSummary\n-------\n\nThis operation creates a tensor of shape `dims` and fills it with `value`.\n\nFor example:\n\n\n```text\n# Output tensor has shape [2, 3].\nfill([2, 3], 9) ==\u003e [[9, 9, 9]\n [9, 9, 9]]\n```\n\n\u003cbr /\u003e\n\n`tf.fill` differs from `tf.constant` in a few ways:\n\n\n- `tf.fill` only supports scalar contents, whereas `tf.constant` supports [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) values.\n- `tf.fill` creates an Op in the computation graph that constructs the actual [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) value at runtime. This is in contrast to `tf.constant` which embeds the entire [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) into the graph with a `Const` node.\n- Because `tf.fill` evaluates at graph runtime, it supports dynamic shapes based on other runtime Tensors, unlike `tf.constant`.\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- dims: 1-D. Represents the shape of the output tensor.\n- value: 0-D (scalar). Value to fill the returned tensor.\n\n\u003cbr /\u003e\n\n(numpy) Equivalent to np.full\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Fill](#classtensorflow_1_1ops_1_1_fill_1a01c1c041aa66636af36c215a28cad8f8)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dims, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` value)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_fill_1ab58dad131aa0ced03a7b508cb5f17ee8) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_fill_1af59efc826ad951c4bb994ccf186b0e3c) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_fill_1a470a2e887eb44734252766d0f4759b04)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_fill_1a7eb9e821e29fbfa81a25dd5ae382ce1f)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_fill_1a952032189c0e55332094cc69e197ae06)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Fill\n\n```gdscript\n Fill(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input dims,\n ::tensorflow::Input value\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]