Organízate con las colecciones
Guarda y clasifica el contenido según tus preferencias.
flujo tensor:: operaciones:: FusionadoPadConv2D
#include <nn_ops.h>
Realiza un relleno como preproceso durante una convolución.
Resumen
Similar a FusedResizeAndPadConv2d, esta operación permite una implementación optimizada donde la etapa de transformación del relleno espacial se fusiona con la búsqueda im2col, pero en este caso sin el filtrado bilineal necesario para cambiar el tamaño. Fusionar el relleno evita la necesidad de escribir los resultados intermedios como tensores completos, lo que reduce la presión de la memoria, y podemos obtener algunas ganancias de latencia fusionando los cálculos de transformación. Esta operación no admite el atributo data_format para Conv2D y en su lugar se utiliza el orden 'NHWC'. Internamente, esta operación utiliza un único búfer temporal por gráfico, lo que significa que se bloqueará si se ejecutan varias versiones en paralelo. Esto se debe a que este operador es principalmente una optimización para minimizar el uso de memoria.
Argumentos:
- alcance: un objeto de alcance
- entrada: 4-D con forma
[batch, in_height, in_width, in_channels]
. - paddings: una matriz de dos columnas que especifica los tamaños de relleno. El número de filas debe ser el mismo que el rango de
input
. - filtro: 4-D con forma
[filter_height, filter_width, in_channels, out_channels]
. - zancadas: 1-D de longitud 4. La zancada de la ventana deslizante para cada dimensión de
input
. Debe estar en el mismo orden que la dimensión especificada con formato. - padding: el tipo de algoritmo de relleno que se utilizará.
Devoluciones:
Atributos públicos
Funciones públicas
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operador::tensorflow::Salida
operator::tensorflow::Output() const
A menos que se indique lo contrario, el contenido de esta página está sujeto a la licencia Reconocimiento 4.0 de Creative Commons y las muestras de código están sujetas a la licencia Apache 2.0. Para obtener más información, consulta las políticas del sitio web de Google Developers. Java es una marca registrada de Oracle o sus afiliados.
Última actualización: 2025-07-27 (UTC).
[null,null,["Última actualización: 2025-07-27 (UTC)."],[],[],null,["# tensorflow::ops::FusedPadConv2D Class Reference\n\ntensorflow::ops::FusedPadConv2D\n===============================\n\n`#include \u003cnn_ops.h\u003e`\n\nPerforms a padding as a preprocess during a convolution.\n\nSummary\n-------\n\nSimilar to FusedResizeAndPadConv2d, this op allows for an optimized implementation where the spatial padding transformation stage is fused with the im2col lookup, but in this case without the bilinear filtering required for resizing. Fusing the padding prevents the need to write out the intermediate results as whole tensors, reducing memory pressure, and we can get some latency gains by merging the transformation calculations. The data_format attribute for [Conv2D](/versions/r2.1/api_docs/cc/class/tensorflow/ops/conv2-d#classtensorflow_1_1ops_1_1_conv2_d) isn't supported by this op, and 'NHWC' order is used instead. Internally this op uses a single per-graph scratch buffer, which means that it will block if multiple versions are being run in parallel. This is because this operator is primarily an optimization to minimize memory usage.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: 4-D with shape `[batch, in_height, in_width, in_channels]`.\n- paddings: A two-column matrix specifying the padding sizes. The number of rows must be the same as the rank of `input`.\n- filter: 4-D with shape `[filter_height, filter_width, in_channels, out_channels]`.\n- strides: 1-D of length 4. The stride of the sliding window for each dimension of `input`. Must be in the same order as the dimension specified with format.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [FusedPadConv2D](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a29433f179ebfe80f5713baf602db0fb2)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` paddings, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, StringPiece mode, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a74eadb05eed0b4ac42f88868b346c2c9) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a9b745852fc93e6ac7cad86ed8d30355d) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a834a7fdc26dccf20c023a8a8f52aa70c)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1a041ca6414035fd6c7c4526905e111b55)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_fused_pad_conv2_d_1ab21cc1c1b746da897e2ee793cb9320a4)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### FusedPadConv2D\n\n```gdscript\n FusedPadConv2D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input paddings,\n ::tensorflow::Input filter,\n StringPiece mode,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]