จัดทุกอย่างให้เป็นระเบียบอยู่เสมอด้วยคอลเล็กชัน
บันทึกและจัดหมวดหมู่เนื้อหาตามค่ากำหนดของคุณ
เทนเซอร์โฟลว์:: ปฏิบัติการ:: เมทริกซ์แบนด์พาร์ท
#include <array_ops.h>
คัดลอกเมตริกซ์ที่ตั้งค่าทุกอย่างไว้นอกแถบกลางในแต่ละเมทริกซ์ที่อยู่ด้านในสุด
สรุป
เป็นศูนย์
ส่วนของ band
จะถูกคำนวณดังนี้: สมมติว่า input
มี k
มิติ [I, J, K, ..., M, N]
จากนั้นเอาต์พุตจะเป็นเทนเซอร์ที่มีรูปร่างเดียวกันกับที่
band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n]
.
ฟังก์ชั่นตัวบ่งชี้
in_band(m, n) = (num_lower < 0 || (mn) <= num_lower)) && (num_upper < 0 || (nm) <= num_upper)
ตัวอย่างเช่น:
# if 'input' is [[ 0, 1, 2, 3]
[-1, 0, 1, 2]
[-2, -1, 0, 1]
[-3, -2, -1, 0]],
tf.matrix_band_part(input, 1, -1) ==> [[ 0, 1, 2, 3]
[-1, 0, 1, 2]
[ 0, -1, 0, 1]
[ 0, 0, -1, 0]],
tf.matrix_band_part(input, 2, 1) ==> [[ 0, 1, 0, 0]
[-1, 0, 1, 0]
[-2, -1, 0, 1]
[ 0, -2, -1, 0]]
กรณีพิเศษที่เป็นประโยชน์:
tf.matrix_band_part(input, 0, -1) ==> Upper triangular part.
tf.matrix_band_part(input, -1, 0) ==> Lower triangular part.
tf.matrix_band_part(input, 0, 0) ==> Diagonal.
ข้อโต้แย้ง:
- ขอบเขต: วัตถุ ขอบเขต
- อินพุต: แรงค์
k
เทนเซอร์ - num_lower: เทนเซอร์ 0-D จำนวนเส้นทแยงมุมย่อยที่จะเก็บ หากเป็นลบ ให้คงรูปสามเหลี่ยมด้านล่างไว้ทั้งหมด
- num_upper: เทนเซอร์ 0-D จำนวนเส้นทแยงมุมเหนือที่จะเก็บ หากเป็นลบ ให้คงรูปสามเหลี่ยมด้านบนไว้ทั้งหมด
ผลตอบแทน:
-
Output
: Rank k
เทนเซอร์ที่มีรูปร่างเดียวกันกับอินพุต เทนเซอร์แถบสีที่แยกออกมา
คุณลักษณะสาธารณะ
งานสาธารณะ
โหนด
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ตัวดำเนินการ::tensorflow::เอาต์พุต
operator::tensorflow::Output() const
เนื้อหาของหน้าเว็บนี้ได้รับอนุญาตภายใต้ใบอนุญาตที่ต้องระบุที่มาของครีเอทีฟคอมมอนส์ 4.0 และตัวอย่างโค้ดได้รับอนุญาตภายใต้ใบอนุญาต Apache 2.0 เว้นแต่จะระบุไว้เป็นอย่างอื่น โปรดดูรายละเอียดที่นโยบายเว็บไซต์ Google Developers Java เป็นเครื่องหมายการค้าจดทะเบียนของ Oracle และ/หรือบริษัทในเครือ
อัปเดตล่าสุด 2025-07-26 UTC
[null,null,["อัปเดตล่าสุด 2025-07-26 UTC"],[],[],null,["# tensorflow::ops::MatrixBandPart Class Reference\n\ntensorflow::ops::MatrixBandPart\n===============================\n\n`#include \u003carray_ops.h\u003e`\n\nCopy a tensor setting everything outside a central band in each innermost matrix.\n\nSummary\n-------\n\nto zero.\n\nThe `band` part is computed as follows: Assume `input` has `k` dimensions `[I, J, K, ..., M, N]`, then the output is a tensor with the same shape where\n\n`band[i, j, k, ..., m, n] = in_band(m, n) * input[i, j, k, ..., m, n]`.\n\nThe indicator function\n\n`in_band(m, n) = (num_lower \u003c 0 || (m-n) \u003c= num_lower)) && (num_upper \u003c 0 || (n-m) \u003c= num_upper)`.\n\nFor example:\n\n\n```text\n# if 'input' is [[ 0, 1, 2, 3]\n [-1, 0, 1, 2]\n [-2, -1, 0, 1]\n [-3, -2, -1, 0]],\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.matrix_band_part(input, 1, -1) ==\u003e [[ 0, 1, 2, 3]\n [-1, 0, 1, 2]\n [ 0, -1, 0, 1]\n [ 0, 0, -1, 0]],\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\ntf.matrix_band_part(input, 2, 1) ==\u003e [[ 0, 1, 0, 0]\n [-1, 0, 1, 0]\n [-2, -1, 0, 1]\n [ 0, -2, -1, 0]]\n```\n\n\u003cbr /\u003e\n\nUseful special cases:\n\n\n```scdoc\n tf.matrix_band_part(input, 0, -1) ==\u003e Upper triangular part.\n tf.matrix_band_part(input, -1, 0) ==\u003e Lower triangular part.\n tf.matrix_band_part(input, 0, 0) ==\u003e Diagonal.\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank `k` tensor.\n- num_lower: 0-D tensor. Number of subdiagonals to keep. If negative, keep entire lower triangle.\n- num_upper: 0-D tensor. Number of superdiagonals to keep. If negative, keep entire upper triangle.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): Rank `k` tensor of the same shape as input. The extracted banded tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixBandPart](#classtensorflow_1_1ops_1_1_matrix_band_part_1aafbd4f5790f99aabe649a2603fab5026)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` num_lower, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` num_upper)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [band](#classtensorflow_1_1ops_1_1_matrix_band_part_1a19ddd7640d84cfeb55298dcd2d150a8c) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_matrix_band_part_1a7f11fcb9cf1a97f13cded627a9579305) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|----------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_band_part_1a7a9ecf47b2def85ed1a8e7ab08dfe008)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_band_part_1a1b6a750bbd105a89c4ef9a398ccf7cf1)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_band_part_1a2be19e72aeddcea40f0be7cc6d6fdf97)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### band\n\n```text\n::tensorflow::Output band\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### MatrixBandPart\n\n```gdscript\n MatrixBandPart(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input num_lower,\n ::tensorflow::Input num_upper\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]