Mantieni tutto organizzato con le raccolte
Salva e classifica i contenuti in base alle tue preferenze.
tensoreflusso:: ops:: MatrixDiagPartV2
#include <array_ops.h>
Restituisce la parte diagonale in batch di un tensore in batch.
Riepilogo
Restituisce un tensore con le diagonali k[0]
-esima a k[1]
-esima input
batch.
Supponiamo che input
abbia r
dimensioni [I, J, ..., L, M, N]
. Sia max_diag_len
la lunghezza massima tra tutte le diagonali da estrarre, max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
Sia num_diags
il numero di diagonali da estrarre estratto, num_diags = k[1] - k[0] + 1
.
Se num_diags == 1
, il tensore di output è di rango r - 1
con forma [I, J, ..., L, max_diag_len]
e valori:
diagonal[i, j, ..., l, n]
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
padding_value ; otherwise.
dove
y = max(-k[1], 0)
,
x = max(k[1], 0)
.
Altrimenti, il tensore di output ha rango r
con dimensioni [I, J, ..., L, num_diags, max_diag_len]
con valori:
diagonal[i, j, ..., l, m, n]
= input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
padding_value ; otherwise.
dove
d = k[1] - m
,
y = max(-d, 0)
e
x = max(d, 0)
.
L'input deve essere almeno una matrice.
Per esempio:
input = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4)
[5, 6, 7, 8],
[9, 8, 7, 6]],
[[5, 4, 3, 2],
[1, 2, 3, 4],
[5, 6, 7, 8]]])
# A main diagonal from each batch.
tf.matrix_diag_part(input) ==> [[1, 6, 7], # Output shape: (2, 3)
[5, 2, 7]]
# A superdiagonal from each batch.
tf.matrix_diag_part(input, k = 1)
==> [[2, 7, 6], # Output shape: (2, 3)
[4, 3, 8]]
# A tridiagonal band from each batch.
tf.matrix_diag_part(input, k = (-1, 1))
==> [[[2, 7, 6], # Output shape: (2, 3, 3)
[1, 6, 7],
[5, 8, 0]],
[[4, 3, 8],
[5, 2, 7],
[1, 6, 0]]]
# Padding value = 9
tf.matrix_diag_part(input, k = (1, 3), padding_value = 9)
==> [[[4, 9, 9], # Output shape: (2, 3, 3)
[3, 8, 9],
[2, 7, 6]],
[[2, 9, 9],
[3, 4, 9],
[4, 3, 8]]]
Argomenti:
- scope: un oggetto Scope
- input: rango
r
tensore dove r >= 2
. - k: Offset diagonale(i). Il valore positivo significa superdiagonale, 0 si riferisce alla diagonale principale e il valore negativo significa subdiagonali.
k
può essere un singolo numero intero (per una singola diagonale) o una coppia di numeri interi che specificano gli estremi inferiore e superiore di una banda di matrice. k[0]
non deve essere maggiore di k[1]
. - valore_imbottitura: il valore con cui riempire l'area esterna alla banda diagonale specificata. L'impostazione predefinita è 0.
Resi:
-
Output
: le diagonali estratte.
Attributi pubblici
Funzioni pubbliche
nodo
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatore::tensorflow::Output
operator::tensorflow::Output() const
Salvo quando diversamente specificato, i contenuti di questa pagina sono concessi in base alla licenza Creative Commons Attribution 4.0, mentre gli esempi di codice sono concessi in base alla licenza Apache 2.0. Per ulteriori dettagli, consulta le norme del sito di Google Developers. Java è un marchio registrato di Oracle e/o delle sue consociate.
Ultimo aggiornamento 2025-07-26 UTC.
[null,null,["Ultimo aggiornamento 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::MatrixDiagPartV2 Class Reference\n\ntensorflow::ops::MatrixDiagPartV2\n=================================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns the batched diagonal part of a batched tensor.\n\nSummary\n-------\n\nReturns a tensor with the `k[0]`-th to `k[1]`-th diagonals of the batched `input`.\n\nAssume `input` has `r` dimensions `[I, J, ..., L, M, N]`. Let `max_diag_len` be the maximum length among all diagonals to be extracted, `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))` Let `num_diags` be the number of diagonals to extract, `num_diags = k[1] - k[0] + 1`.\n\nIf `num_diags == 1`, the output tensor is of rank `r - 1` with shape `[I, J, ..., L, max_diag_len]` and values:\n\n\u003cbr /\u003e\n\n```scdoc\ndiagonal[i, j, ..., l, n]\n = input[i, j, ..., l, n+y, n+x] ; if 0 \u003c= n+y \u003c M and 0 \u003c= n+x \u003c N,\n padding_value ; otherwise.\n```\nwhere `y = max(-k[1], 0)`, `x = max(k[1], 0)`.\n\n\u003cbr /\u003e\n\nOtherwise, the output tensor has rank `r` with dimensions `[I, J, ..., L, num_diags, max_diag_len]` with values:\n\n\u003cbr /\u003e\n\n```scdoc\ndiagonal[i, j, ..., l, m, n]\n = input[i, j, ..., l, n+y, n+x] ; if 0 \u003c= n+y \u003c M and 0 \u003c= n+x \u003c N,\n padding_value ; otherwise.\n```\nwhere `d = k[1] - m`, `y = max(-d, 0)`, and `x = max(d, 0)`.\n\n\u003cbr /\u003e\n\nThe input must be at least a matrix.\n\nFor example:\n\n\n```text\ninput = np.array([[[1, 2, 3, 4], # Input shape: (2, 3, 4)\n [5, 6, 7, 8],\n [9, 8, 7, 6]],\n [[5, 4, 3, 2],\n [1, 2, 3, 4],\n [5, 6, 7, 8]]])\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A main diagonal from each batch.\ntf.matrix_diag_part(input) ==\u003e [[1, 6, 7], # Output shape: (2, 3)\n [5, 2, 7]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A superdiagonal from each batch.\ntf.matrix_diag_part(input, k = 1)\n ==\u003e [[2, 7, 6], # Output shape: (2, 3)\n [4, 3, 8]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# A tridiagonal band from each batch.\ntf.matrix_diag_part(input, k = (-1, 1))\n ==\u003e [[[2, 7, 6], # Output shape: (2, 3, 3)\n [1, 6, 7],\n [5, 8, 0]],\n [[4, 3, 8],\n [5, 2, 7],\n [1, 6, 0]]]\n```\n\n\u003cbr /\u003e\n\n\n```scdoc\n# Padding value = 9\ntf.matrix_diag_part(input, k = (1, 3), padding_value = 9)\n ==\u003e [[[4, 9, 9], # Output shape: (2, 3, 3)\n [3, 8, 9],\n [2, 7, 6]],\n [[2, 9, 9],\n [3, 4, 9],\n [4, 3, 8]]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Rank `r` tensor where `r \u003e= 2`.\n- k: Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`.\n- padding_value: The value to fill the area outside the specified diagonal band with. Default is 0.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The extracted diagonal(s).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [MatrixDiagPartV2](#classtensorflow_1_1ops_1_1_matrix_diag_part_v2_1ad3de7ab4ab1196ff0eb0a0b9712563ef)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` k, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` padding_value)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [diagonal](#classtensorflow_1_1ops_1_1_matrix_diag_part_v2_1a7a8892ae88249cf5f89b97544d71a59c) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_matrix_diag_part_v2_1aefc836bb535eab5db669667a152eba42) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_matrix_diag_part_v2_1a0b20ceb05713921670ce29cf7671a152)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_matrix_diag_part_v2_1acb91e8a485455813fcd8d9d3558c793b)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_matrix_diag_part_v2_1a18e6d0e922c930c2880112f18f2ac011)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### diagonal\n\n```text\n::tensorflow::Output diagonal\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### MatrixDiagPartV2\n\n```gdscript\n MatrixDiagPartV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input k,\n ::tensorflow::Input padding_value\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]