コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
テンソルフロー::作戦::パッド
#include <array_ops.h>
テンソルをゼロで埋めます。
まとめ
この操作では、指定したpaddings
に従ってinput
にゼロを埋め込みます。 paddings
、形状[Dn, 2]
の整数テンソルです。ここで、 n はinput
のランクです。 input
の各次元 D について、 paddings[D, 0]
その次元のinput
の内容の前に追加するゼロの数を示し、 paddings[D, 1]
その次元のinput
の内容の後に追加するゼロの数を示します。
出力の各次元 D のパディングされたサイズは次のとおりです。
paddings(D, 0) + input.dim_size(D) + paddings(D, 1)
例えば:
# 't' is [[1, 1], [2, 2]]
# 'paddings' is [[1, 1], [2, 2]]
# rank of 't' is 2
pad(t, paddings) ==> [[0, 0, 0, 0, 0, 0]
[0, 0, 1, 1, 0, 0]
[0, 0, 2, 2, 0, 0]
[0, 0, 0, 0, 0, 0]]
引数:
戻り値:
パブリック属性
公共機能
ノード
::tensorflow::Node * node() const
operator::tensorflow::Input() const
演算子::tensorflow::出力
operator::tensorflow::Output() const
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
最終更新日 2025-07-26 UTC。
[null,null,["最終更新日 2025-07-26 UTC。"],[],[],null,["# tensorflow::ops::Pad Class Reference\n\ntensorflow::ops::Pad\n====================\n\n`#include \u003carray_ops.h\u003e`\n\nPads a tensor with zeros.\n\nSummary\n-------\n\nThis operation pads a `input` with zeros according to the `paddings` you specify. `paddings` is an integer tensor with shape `[Dn, 2]`, where n is the rank of `input`. For each dimension D of `input`, `paddings[D, 0]` indicates how many zeros to add before the contents of `input` in that dimension, and `paddings[D, 1]` indicates how many zeros to add after the contents of `input` in that dimension.\n\nThe padded size of each dimension D of the output is:\n\n\n`paddings(D, 0) + input.dim_size(D) + paddings(D, 1)`\n\nFor example:\n\n\n```text\n# 't' is [[1, 1], [2, 2]]\n# 'paddings' is [[1, 1], [2, 2]]\n# rank of 't' is 2\npad(t, paddings) ==\u003e [[0, 0, 0, 0, 0, 0]\n [0, 0, 1, 1, 0, 0]\n [0, 0, 2, 2, 0, 0]\n [0, 0, 0, 0, 0, 0]]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Pad](#classtensorflow_1_1ops_1_1_pad_1a85413c81814471dc1ba383fffd013f80)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` paddings)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_pad_1a563b99bce289e4fa9fff7224401df773) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_pad_1aa9ec34eb45ae5c727d6bba3e8b51be74) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_pad_1a56e85f7a36d0008faa2e054812438b98)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_pad_1a800a33c0560ed61b5f202d6a5aaf4ca9)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_pad_1a177bc15a4ed8369a6438d47130f9ac27)`() const ` | ` ` ` ` |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Pad\n\n```gdscript\n Pad(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input paddings\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n```"]]