Sử dụng bộ sưu tập để sắp xếp ngăn nắp các trang
Lưu và phân loại nội dung dựa trên lựa chọn ưu tiên của bạn.
dòng chảy căng:: ôi:: Phân tích cú pháp đơnVí dụ
#include <parsing_ops.h>
Chuyển đổi một proto tf.Example (dưới dạng một chuỗi) thành các tensor đã gõ.
Bản tóm tắt
Lập luận:
- phạm vi: Một đối tượng Phạm vi
- được tuần tự hóa: Một vectơ chứa một loạt các nguyên mẫu Ví dụ được tuần tự hóa nhị phân.
- dense_defaults: Danh sách các Tensors (một số có thể trống), có độ dài khớp với độ dài
dense_keys
. dense_defaults[j] cung cấp các giá trị mặc định khi feature_map của ví dụ thiếudense_key[j]. Nếu một Tensor trống được cung cấp chodense_defaults[j] thì tính năngdense_keys[j] là bắt buộc. Loại đầu vào được suy ra từdense_defaults[j], ngay cả khi nó trống. Nếudense_defaults[j] không trống vàdense_shapes[j] được xác định đầy đủ thì hình dạng củadense_defaults[j] phải khớp với hình dạng củadense_shapes[j]. Nếudense_shapes[j] có thứ nguyên chính không xác định (tính năng dày đặc sải bước thay đổi),dense_defaults[j] phải chứa một phần tử duy nhất: phần tử đệm. - num_sparse: Số lượng đối tượng thưa thớt được phân tích cú pháp từ ví dụ. Độ dài này phải phù hợp với độ dài của
sparse_keys
và sparse_types
. - thưa_keys: Danh sách các chuỗi
num_sparse
. Các khóa dự kiến trong các tính năng của Ví dụ được liên kết với các giá trị thưa thớt. - dense_keys: Các khóa dự kiến trong các tính năng của Ví dụ được liên kết với các giá trị dày đặc.
- thưa thớt: Danh sách các loại
num_sparse
; các kiểu dữ liệu của dữ liệu trong từng Tính năng được cung cấp trong spzzy_keys. Hiện tại, ParseSingleExample op hỗ trợ DT_FLOAT (FloatList), DT_INT64 (Int64List) và DT_STRING (BytesList). - dense_shapes: Hình dạng của dữ liệu trong mỗi Tính năng được cung cấp dưới dạngdense_keys. Độ dài của danh sách này phải khớp với độ dài
dense_keys
. Số phần tử trong Đối tượng tương ứng vớidense_key[j] phải luôn bằngdense_shapes[j].NumEntries(). Nếudense_shapes[j] == (D0, D1, ..., DN) thì hình dạng đầu ra Tensordense_values [j] sẽ là (D0, D1, ..., DN): Trong trường hợpdense_shapes[j] = (-1, D1, ..., DN), hình dạng của Tensordense_values [j] đầu ra sẽ là (M, D1, .., DN), trong đó M là số khối phần tử có độ dài D1 * . ... * DN, ở đầu vào.
Trả về:
-
OutputList
thớt_indices -
OutputList
thớt_values -
OutputList
thớt_shapes -
OutputList
đặc_values
Thuộc tính công khai
Chức năng công cộng
Phân tích cú pháp đơnVí dụ
ParseSingleExample(
const ::tensorflow::Scope & scope,
::tensorflow::Input serialized,
::tensorflow::InputList dense_defaults,
int64 num_sparse,
const gtl::ArraySlice< string > & sparse_keys,
const gtl::ArraySlice< string > & dense_keys,
const DataTypeSlice & sparse_types,
const gtl::ArraySlice< PartialTensorShape > & dense_shapes
)
Trừ phi có lưu ý khác, nội dung của trang này được cấp phép theo Giấy phép ghi nhận tác giả 4.0 của Creative Commons và các mẫu mã lập trình được cấp phép theo Giấy phép Apache 2.0. Để biết thông tin chi tiết, vui lòng tham khảo Chính sách trang web của Google Developers. Java là nhãn hiệu đã đăng ký của Oracle và/hoặc các đơn vị liên kết với Oracle.
Cập nhật lần gần đây nhất: 2025-07-26 UTC.
[null,null,["Cập nhật lần gần đây nhất: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::ParseSingleExample Class Reference\n\ntensorflow::ops::ParseSingleExample\n===================================\n\n`#include \u003cparsing_ops.h\u003e`\n\nTransforms a tf.Example proto (as a string) into typed tensors.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized: A vector containing a batch of binary serialized Example protos.\n- dense_defaults: A list of Tensors (some may be empty), whose length matches the length of `dense_keys`. dense_defaults\\[j\\] provides default values when the example's feature_map lacks dense_key\\[j\\]. If an empty [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) is provided for dense_defaults\\[j\\], then the Feature dense_keys\\[j\\] is required. The input type is inferred from dense_defaults\\[j\\], even when it's empty. If dense_defaults\\[j\\] is not empty, and dense_shapes\\[j\\] is fully defined, then the shape of dense_defaults\\[j\\] must match that of dense_shapes\\[j\\]. If dense_shapes\\[j\\] has an undefined major dimension (variable strides dense feature), dense_defaults\\[j\\] must contain a single element: the padding element.\n- num_sparse: The number of sparse features to be parsed from the example. This must match the lengths of `sparse_keys` and `sparse_types`.\n- sparse_keys: A list of `num_sparse` strings. The keys expected in the Examples' features associated with sparse values.\n- dense_keys: The keys expected in the Examples' features associated with dense values.\n- sparse_types: A list of `num_sparse` types; the data types of data in each Feature given in sparse_keys. Currently the [ParseSingleExample](/versions/r2.1/api_docs/cc/class/tensorflow/ops/parse-single-example#classtensorflow_1_1ops_1_1_parse_single_example) op supports DT_FLOAT (FloatList), DT_INT64 (Int64List), and DT_STRING (BytesList).\n- dense_shapes: The shapes of data in each Feature given in dense_keys. The length of this list must match the length of `dense_keys`. The number of elements in the Feature corresponding to dense_key\\[j\\] must always equal dense_shapes\\[j\\].NumEntries(). If dense_shapes\\[j\\] == (D0, D1, ..., DN) then the shape of output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (D0, D1, ..., DN): In the case dense_shapes\\[j\\] = (-1, D1, ..., DN), the shape of the output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (M, D1, .., DN), where M is the number of blocks of elements of length D1 \\* .... \\* DN, in the input.\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList` sparse_indices\n- `OutputList` sparse_values\n- `OutputList` sparse_shapes\n- `OutputList` dense_values\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ParseSingleExample](#classtensorflow_1_1ops_1_1_parse_single_example_1a1ae193409b639d7d46779ef2fe25aaa8)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized, ::`[tensorflow::InputList](/versions/r2.1/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_defaults, int64 num_sparse, const gtl::ArraySlice\u003c string \u003e & sparse_keys, const gtl::ArraySlice\u003c string \u003e & dense_keys, const DataTypeSlice & sparse_types, const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|\n| [dense_values](#classtensorflow_1_1ops_1_1_parse_single_example_1a47aea5050a1c195f45e106a7e5dd8d6c) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [operation](#classtensorflow_1_1ops_1_1_parse_single_example_1a653e666e79f4a510ce99022030457306) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_parse_single_example_1aff26528d71218f864c4bbe158da75497) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_shapes](#classtensorflow_1_1ops_1_1_parse_single_example_1a43c18746bd9c93c475b6f796e90cf197) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_parse_single_example_1a0dbd7fd1ac19943db8a06f1004a43731) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\nPublic attributes\n-----------------\n\n### dense_values\n\n```scdoc\n::tensorflow::OutputList dense_values\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::OutputList sparse_indices\n``` \n\n### sparse_shapes\n\n```scdoc\n::tensorflow::OutputList sparse_shapes\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::OutputList sparse_values\n``` \n\nPublic functions\n----------------\n\n### ParseSingleExample\n\n```gdscript\n ParseSingleExample(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized,\n ::tensorflow::InputList dense_defaults,\n int64 num_sparse,\n const gtl::ArraySlice\u003c string \u003e & sparse_keys,\n const gtl::ArraySlice\u003c string \u003e & dense_keys,\n const DataTypeSlice & sparse_types,\n const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes\n)\n```"]]