Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: SparseSoftmaxCrossEntropyWithLogits
#include <nn_ops.h>
Softmax çapraz entropi maliyetini ve geri yayılma gradyanlarını hesaplar.
Özet
SoftmaxCrossEntropyWithLogits
farklı olarak bu işlem, etiket olasılıkları matrisini kabul etmez, bunun yerine özellik satırı başına tek bir etiketi kabul eder. Bu etiketin verilen satır için 1,0 olasılığa sahip olduğu kabul edilir.
Girdiler logitlerdir, olasılıklar değil.
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- özellikler: Batch_size x num_classes matrisi
- etiketler: [0, num_classes) cinsinden değerlere sahip Batch_size vektörü. Bu, verilen mini parti girişinin etiketidir.
İade:
-
Output
kaybı: Örnek başına kayıp (batch_size vektörü). -
Output
geri desteği: geri yayılan degradeler (batch_size x num_classes matrisi).
Genel özellikler
Kamu işlevleri
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-25 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::SparseSoftmaxCrossEntropyWithLogits Class Reference\n\ntensorflow::ops::SparseSoftmaxCrossEntropyWithLogits\n====================================================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes softmax cross entropy cost and gradients to backpropagate.\n\nSummary\n-------\n\nUnlike [SoftmaxCrossEntropyWithLogits](/versions/r2.1/api_docs/cc/class/tensorflow/ops/softmax-cross-entropy-with-logits#classtensorflow_1_1ops_1_1_softmax_cross_entropy_with_logits), this operation does not accept a matrix of label probabilities, but rather a single label per row of features. This label is considered to have probability 1.0 for the given row.\n\nInputs are the logits, not probabilities.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- features: batch_size x num_classes matrix\n- labels: batch_size vector with values in \\[0, num_classes). This is the label for the given minibatch entry.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) loss: Per example loss (batch_size vector).\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) backprop: backpropagated gradients (batch_size x num_classes matrix).\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseSoftmaxCrossEntropyWithLogits](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1a965e868e103e3908d2bfb1dcd368e90d)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` features, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` labels)` ||\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [backprop](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1a9e77b4f5efe0d0762f8fc95a3f7cdbaa) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [loss](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1aa3c9d1b704d919039c2cd2686fbea683) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n| [operation](#classtensorflow_1_1ops_1_1_sparse_softmax_cross_entropy_with_logits_1ac581285ea4e5d57f85d8f317aed838fa) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\nPublic attributes\n-----------------\n\n### backprop\n\n```text\n::tensorflow::Output backprop\n``` \n\n### loss\n\n```text\n::tensorflow::Output loss\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### SparseSoftmaxCrossEntropyWithLogits\n\n```gdscript\n SparseSoftmaxCrossEntropyWithLogits(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input features,\n ::tensorflow::Input labels\n)\n```"]]