Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: Nerede3
#include <math_ops.h>
condition
bağlı olarak x
veya y
arasından öğeleri seçer.
Özet
x
ve y
tensörlerinin tümü aynı şekle sahip olmalıdır ve çıktı da bu şekle sahip olacaktır.
x
ve y
skaler ise condition
tensörü skaler olmalıdır. Eğer x
ve y
vektörler veya daha yüksek dereceliyse, condition
ya bir skaler olmalı, boyutu x
ilk boyutuyla eşleşen bir vektör olmalı ya da x
ile aynı şekle sahip olmalıdır.
condition
tensörü, her öğedeki değere bağlı olarak, çıktıdaki karşılık gelen öğenin/satırın x
(doğruysa) veya y
(yanlışsa) alınması gerektiğini seçen bir maske görevi görür.
condition
bir vektörse ve x
ile y
daha yüksek dereceli matrislerse, x
ve y
hangi satırın (dış boyut) kopyalanacağını seçer. condition
x
ve y
ile aynı şekle sahipse, x
ve y
hangi öğenin kopyalanacağını seçer.
Örneğin:
# 'condition' tensor is [[True, False]
# [False, True]]
# 't' is [[1, 2],
# [3, 4]]
# 'e' is [[5, 6],
# [7, 8]]
select(condition, t, e) # => [[1, 6], [7, 4]]
# 'condition' tensor is [True, False]
# 't' is [[1, 2],
# [3, 4]]
# 'e' is [[5, 6],
# [7, 8]]
select(condition, t, e) ==> [[1, 2],
[7, 8]]
Arguments:
- scope: A Scope object
- x: = A
Tensor
which may have the same shape as condition
. If condition
is rank 1, x
may have higher rank, but its first dimension must match the size of condition
.
- y: = A
Tensor
with the same type and shape as x
.
Returns:
Public attributes
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-27 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-27 UTC."],[],[],null,["# tensorflow::ops::Where3 Class Reference\n\ntensorflow::ops::Where3\n=======================\n\n`#include \u003cmath_ops.h\u003e`\n\nSelects elements from `x` or `y`, depending on `condition`.\n\nSummary\n-------\n\nThe `x`, and `y` tensors must all have the same shape, and the output will also have that shape.\n\nThe `condition` tensor must be a scalar if `x` and `y` are scalars. If `x` and `y` are vectors or higher rank, then `condition` must be either a scalar, a vector with size matching the first dimension of `x`, or must have the same shape as `x`.\n\nThe `condition` tensor acts as a mask that chooses, based on the value at each element, whether the corresponding element / row in the output should be taken from `x` (if true) or `y` (if false).\n\nIf `condition` is a vector and `x` and `y` are higher rank matrices, then it chooses which row (outer dimension) to copy from `x` and `y`. If `condition` has the same shape as `x` and `y`, then it chooses which element to copy from `x` and `y`.\n\nFor example:\n\n\n```text\n# 'condition' tensor is [[True, False]\n# [False, True]]\n# 't' is [[1, 2],\n# [3, 4]]\n# 'e' is [[5, 6],\n# [7, 8]]\nselect(condition, t, e) # =\u003e [[1, 6], [7, 4]]\n```\n\n\u003cbr /\u003e\n\n\n```text\n# 'condition' tensor is [True, False]\n# 't' is [[1, 2],\n# [3, 4]]\n# 'e' is [[5, 6],\n# [7, 8]]\nselect(condition, t, e) ==\u003e [[1, 2],\n [7, 8]]\n```\n\n\u003cbr /\u003e\n\n\n````gdscript\n \n Arguments:\n \n- scope: A /versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope object\n\n \n- x: = A /versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor which may have the same shape as condition. If condition is rank 1, x may have higher rank, but its first dimension must match the size of condition.\n\n \n- y: = A /versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor with the same type and shape as x.\n\n \n\n Returns:\n \n- /versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output: = A /versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor with the same type and shape as x and y. \n\n \n\n \n\n\n \n### Constructors and Destructors\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_where3_1a1e043e7f8493b555a94d106084a64a32(const ::/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope & scope, ::/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input condition, ::/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input x, ::/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input y)\n \n\n \n\n\n \n\n\n \n### Public attributes\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_where3_1a9b749e1046fbe4c39075a2b037391cf2\n \n\n \n\n /versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_where3_1a07742c7ad2705b0fa9b9cc9e59eca41b\n \n\n \n\n ::/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output\n \n\n \n\n\n \n\n\n \n### Public functions\n\n\n \n\n\n\n #classtensorflow_1_1ops_1_1_where3_1aacfd2a5bd041b46bc2179d3e9ac5c0c6() const \n \n\n \n\n ::tensorflow::Node *\n \n\n \n\n\n\n #classtensorflow_1_1ops_1_1_where3_1a7fcabeeb211b239288d028b587a88e54() const \n \n\n \n\n `\n` \n`\n` \n\n\n\n #classtensorflow_1_1ops_1_1_where3_1aedd6e529c7127af0c5af333ded627ab3() const \n \n\n \n\n `\n` \n`\n` \n\n\n Public attributes\n \n \n### operation\n\n\n \n```\nOperation operation\n```\n\n \n\n \n \n \n### output\n\n\n \n\n\n```text\n::tensorflow::Output output\n```\n\n \n\n \n Public functions\n \n \n### Where3\n\n\n \n\n\n```gdscript\n Where3(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input condition,\n ::tensorflow::Input x,\n ::tensorflow::Input y\n)\n```\n\n \n\n \n \n \n### node\n\n\n \n\n\n```gdscript\n::tensorflow::Node * node() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Input\n\n\n \n\n\n```gdscript\n operator::tensorflow::Input() const \n```\n\n \n\n \n \n \n### operator::tensorflow::Output\n\n\n \n\n\n```gdscript\n operator::tensorflow::Output() const \n```\n\n \n\n \n\n \n\n \n````"]]