Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: OneHot
#include <array_ops.h>
Tek sıcak tensör döndürür.
Özet
indices
indekslerle temsil edilen konumlar on_value
değer alırken, diğer tüm konumlar off_value
değer alır.
Giriş indices
N
sıralaması ise, çıktı N+1
sıralamasına sahip olacaktır. Yeni eksen, boyut axis
oluşturulur (varsayılan: yeni eksen sona eklenir).
indices
skaler ise çıktı şekli uzunluk depth
bir vektörü olacaktır.
indices
uzunluk features
bir vektörüyse çıktı şekli şöyle olacaktır:
features x depth if axis == -1
depth x features if axis == 0
indices
[batch, features]
şeklinde bir matris (toplu iş) ise, çıktı şekli şöyle olacaktır:
batch x features x depth if axis == -1
batch x depth x features if axis == 1
depth x batch x features if axis == 0
Örnekler
varsayalım ki
indices = [0, 2, -1, 1]
depth = 3
on_value = 5.0
off_value = 0.0
axis = -1
O zaman çıktı [4 x 3]
olur:
output =
[5.0 0.0 0.0] // one_hot(0)
[0.0 0.0 5.0] // one_hot(2)
[0.0 0.0 0.0] // one_hot(-1)
[0.0 5.0 0.0] // one_hot(1)
varsayalım ki
indices = [0, 2, -1, 1]
depth = 3
on_value = 0.0
off_value = 3.0
axis = 0
O zaman çıktı [3 x 4]
olur:
output =
[0.0 3.0 3.0 3.0]
[3.0 3.0 3.0 0.0]
[3.0 3.0 3.0 3.0]
[3.0 0.0 3.0 3.0]
// ^ one_hot(0)
// ^ one_hot(2)
// ^ one_hot(-1)
// ^ one_hot(1)
varsayalım ki
indices = [[0, 2], [1, -1]]
depth = 3
on_value = 1.0
off_value = 0.0
axis = -1
O zaman çıktı şu şekildedir: [2 x 2 x 3]
:
output =
[
[1.0, 0.0, 0.0] // one_hot(0)
[0.0, 0.0, 1.0] // one_hot(2)
][
[0.0, 1.0, 0.0] // one_hot(1)
[0.0, 0.0, 0.0] // one_hot(-1)
]
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- endeksler: Endekslerin tensörü.
- derinlik: Bir sıcak boyutun derinliğini tanımlayan bir skaler.
- on_value:
indices[j] = i
olduğunda çıktıda doldurulacak değeri tanımlayan bir skaler. - off_value:
indices[j] != i
olduğunda çıktıda doldurulacak değeri tanımlayan bir skaler.
İsteğe bağlı özellikler (bkz. Attrs
):
- eksen: Doldurulacak eksen (varsayılan: -1, yeni bir en iç eksen).
İade:
Genel statik işlevler |
---|
Axis (int64 x) | |
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Genel statik işlevler
Eksen
Attrs Axis(
int64 x
)
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::OneHot Class Reference\n\ntensorflow::ops::OneHot\n=======================\n\n`#include \u003carray_ops.h\u003e`\n\nReturns a one-hot tensor.\n\nSummary\n-------\n\nThe locations represented by indices in `indices` take value `on_value`, while all other locations take value `off_value`.\n\nIf the input `indices` is rank `N`, the output will have rank `N+1`, The new axis is created at dimension `axis` (default: the new axis is appended at the end).\n\nIf `indices` is a scalar the output shape will be a vector of length `depth`.\n\nIf `indices` is a vector of length `features`, the output shape will be: \n\n```text\n features x depth if axis == -1\n depth x features if axis == 0\n```\n\n\u003cbr /\u003e\n\nIf `indices` is a matrix (batch) with shape `[batch, features]`, the output shape will be: \n\n```text\n batch x features x depth if axis == -1\n batch x depth x features if axis == 1\n depth x batch x features if axis == 0\n```\n\n\u003cbr /\u003e\n\n\nExamples\n========\n\n\u003cbr /\u003e\n\nSuppose that \n\n```scdoc\n indices = [0, 2, -1, 1]\n depth = 3\n on_value = 5.0\n off_value = 0.0\n axis = -1\n```\n\n\u003cbr /\u003e\n\nThen output is `[4 x 3]`: \n\n```scdoc\noutput =\n [5.0 0.0 0.0] // one_hot(0)\n [0.0 0.0 5.0] // one_hot(2)\n [0.0 0.0 0.0] // one_hot(-1)\n [0.0 5.0 0.0] // one_hot(1)\n```\n\n\u003cbr /\u003e\n\nSuppose that \n\n```scdoc\n indices = [0, 2, -1, 1]\n depth = 3\n on_value = 0.0\n off_value = 3.0\n axis = 0\n```\n\n\u003cbr /\u003e\n\nThen output is `[3 x 4]`: \n\n```scdoc\noutput =\n [0.0 3.0 3.0 3.0]\n [3.0 3.0 3.0 0.0]\n [3.0 3.0 3.0 3.0]\n [3.0 0.0 3.0 3.0]\n// ^ one_hot(0)\n// ^ one_hot(2)\n// ^ one_hot(-1)\n// ^ one_hot(1)\n```\n\n\u003cbr /\u003e\n\nSuppose that \n\n```scdoc\n indices = [[0, 2], [1, -1]]\n depth = 3\n on_value = 1.0\n off_value = 0.0\n axis = -1\n```\n\n\u003cbr /\u003e\n\nThen output is `[2 x 2 x 3]`: \n\n```scdoc\noutput =\n [\n [1.0, 0.0, 0.0] // one_hot(0)\n [0.0, 0.0, 1.0] // one_hot(2)\n ][\n [0.0, 1.0, 0.0] // one_hot(1)\n [0.0, 0.0, 0.0] // one_hot(-1)\n ]\n```\n\n\u003cbr /\u003e\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- indices: A tensor of indices.\n- depth: A scalar defining the depth of the one hot dimension.\n- on_value: A scalar defining the value to fill in output when `indices[j] = i`.\n- off_value: A scalar defining the value to fill in output when `indices[j] != i`.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/one-hot/attrs#structtensorflow_1_1ops_1_1_one_hot_1_1_attrs)):\n\n- axis: The axis to fill (default: -1, a new inner-most axis).\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The one-hot tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [OneHot](#classtensorflow_1_1ops_1_1_one_hot_1a854f72c62e64f05c6b259c56ea5734bf)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` depth, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` on_value, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` off_value)` ||\n| [OneHot](#classtensorflow_1_1ops_1_1_one_hot_1a606bee0fc38c4a1041cb1cd0be5920ca)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` depth, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` on_value, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` off_value, const `[OneHot::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/one-hot/attrs#structtensorflow_1_1ops_1_1_one_hot_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_one_hot_1aa5fc51f1f352f7ce7ffb0906b98ab4ec) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_one_hot_1a120b99aec6bb831f0cec75b08bb8ab99) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_one_hot_1a79ee3b14e2833cd20e87ac9ed19c8852)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_one_hot_1afd6cf127f64b799170e3bbdb63bbf3a8)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_one_hot_1aeb4ae438117dbe3d0e9a0ff8af670b54)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|\n| [Axis](#classtensorflow_1_1ops_1_1_one_hot_1a11c56717df9255c7d78ae73a2a9349f6)`(int64 x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/one-hot/attrs#structtensorflow_1_1ops_1_1_one_hot_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::OneHot::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/one-hot/attrs) | Optional attribute setters for [OneHot](/versions/r2.1/api_docs/cc/class/tensorflow/ops/one-hot#classtensorflow_1_1ops_1_1_one_hot). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### OneHot\n\n```gdscript\n OneHot(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input indices,\n ::tensorflow::Input depth,\n ::tensorflow::Input on_value,\n ::tensorflow::Input off_value\n)\n``` \n\n### OneHot\n\n```gdscript\n OneHot(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input indices,\n ::tensorflow::Input depth,\n ::tensorflow::Input on_value,\n ::tensorflow::Input off_value,\n const OneHot::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### Axis\n\n```text\nAttrs Axis(\n int64 x\n)\n```"]]