Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: AyrıştırmaTek Örnek
#include <parsing_ops.h>
Bir tf.Example protokolünü (dize olarak) yazılan tensörlere dönüştürür.
Özet
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- serileştirilmiş: Bir dizi ikili serileştirilmiş Örnek protokolü içeren bir vektör.
- yoğun_defaults: Uzunluğu,
dense_keys
uzunluğuyla eşleşen Tensörlerin bir listesi (bazıları boş olabilir). yoğun_defaults[j], örneğin feature_map'inde yoğun_anahtar[j] bulunmadığında varsayılan değerleri sağlar. Yoğun_varsayılanlar[j] için boş bir Tensör sağlanırsa, yoğun_anahtarlar[j] Özelliği gereklidir. Giriş türü, boş olsa bile, yoğun_defaults[j]'dan çıkarılır. Yoğun_defaults[j] boş değilse ve yoğun_şekiller[j] tam olarak tanımlanmışsa, yoğun_defaults[j]'nin şekli yoğun_şekiller[j]'nin şekliyle eşleşmelidir. Eğer yoğun_şekiller[j] tanımlanmamış bir ana boyuta sahipse (değişken adımlar yoğun özelliği), yoğun_defaults[j] tek bir öğe içermelidir: dolgu öğesi. - num_sparse: Örnekten ayrıştırılacak seyrek özelliklerin sayısı. Bu,
sparse_keys
ve sparse_types
uzunluklarıyla eşleşmelidir. - sparse_keys:
num_sparse
dizelerinin listesi. Örneklerin özelliklerinde beklenen anahtarlar seyrek değerlerle ilişkilidir. - yoğun_anahtarlar: Yoğun değerlerle ilişkili Örneklerin özelliklerinde beklenen anahtarlar.
- sparse_types:
num_sparse
türlerinin listesi; sparse_keys'de verilen her Özellikteki verilerin veri türleri. Şu anda ParseSingleExample işlemi DT_FLOAT (FloatList), DT_INT64 (Int64List) ve DT_STRING'i (BytesList) desteklemektedir. - yoğun_şekiller: Her Özellikteki verilerin yoğun_anahtarlarda verilen şekilleri. Bu listenin uzunluğu,
dense_keys
uzunluğuyla eşleşmelidir. Özellikte yoğun_anahtar[j]'a karşılık gelen öğelerin sayısı her zaman yoğun_şekiller[j].NumEntries()'a eşit olmalıdır. Yoğun_şekiller[j] == (D0, D1, ..., DN) ise, Tensör yoğun_değerleri[j] çıktısının şekli (D0, D1, ..., DN) olacaktır: Yoğun_şekiller[j] = olması durumunda (-1, D1, ..., DN), Tensör yoğun_değerleri[j] çıktısının şekli (M, D1, .., DN) olacaktır; burada M, D1 * uzunluğundaki elemanların blok sayısıdır. ... * DN, girişte.
İade:
-
OutputList
sparse_indices -
OutputList
sparse_values -
OutputList
sparse_shapes -
OutputList
yoğun_değerler
Genel özellikler
Kamu işlevleri
AyrıştırmaTek Örnek
ParseSingleExample(
const ::tensorflow::Scope & scope,
::tensorflow::Input serialized,
::tensorflow::InputList dense_defaults,
int64 num_sparse,
const gtl::ArraySlice< string > & sparse_keys,
const gtl::ArraySlice< string > & dense_keys,
const DataTypeSlice & sparse_types,
const gtl::ArraySlice< PartialTensorShape > & dense_shapes
)
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[],[],null,["# tensorflow::ops::ParseSingleExample Class Reference\n\ntensorflow::ops::ParseSingleExample\n===================================\n\n`#include \u003cparsing_ops.h\u003e`\n\nTransforms a tf.Example proto (as a string) into typed tensors.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized: A vector containing a batch of binary serialized Example protos.\n- dense_defaults: A list of Tensors (some may be empty), whose length matches the length of `dense_keys`. dense_defaults\\[j\\] provides default values when the example's feature_map lacks dense_key\\[j\\]. If an empty [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) is provided for dense_defaults\\[j\\], then the Feature dense_keys\\[j\\] is required. The input type is inferred from dense_defaults\\[j\\], even when it's empty. If dense_defaults\\[j\\] is not empty, and dense_shapes\\[j\\] is fully defined, then the shape of dense_defaults\\[j\\] must match that of dense_shapes\\[j\\]. If dense_shapes\\[j\\] has an undefined major dimension (variable strides dense feature), dense_defaults\\[j\\] must contain a single element: the padding element.\n- num_sparse: The number of sparse features to be parsed from the example. This must match the lengths of `sparse_keys` and `sparse_types`.\n- sparse_keys: A list of `num_sparse` strings. The keys expected in the Examples' features associated with sparse values.\n- dense_keys: The keys expected in the Examples' features associated with dense values.\n- sparse_types: A list of `num_sparse` types; the data types of data in each Feature given in sparse_keys. Currently the [ParseSingleExample](/versions/r2.1/api_docs/cc/class/tensorflow/ops/parse-single-example#classtensorflow_1_1ops_1_1_parse_single_example) op supports DT_FLOAT (FloatList), DT_INT64 (Int64List), and DT_STRING (BytesList).\n- dense_shapes: The shapes of data in each Feature given in dense_keys. The length of this list must match the length of `dense_keys`. The number of elements in the Feature corresponding to dense_key\\[j\\] must always equal dense_shapes\\[j\\].NumEntries(). If dense_shapes\\[j\\] == (D0, D1, ..., DN) then the shape of output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (D0, D1, ..., DN): In the case dense_shapes\\[j\\] = (-1, D1, ..., DN), the shape of the output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (M, D1, .., DN), where M is the number of blocks of elements of length D1 \\* .... \\* DN, in the input.\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList` sparse_indices\n- `OutputList` sparse_values\n- `OutputList` sparse_shapes\n- `OutputList` dense_values\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ParseSingleExample](#classtensorflow_1_1ops_1_1_parse_single_example_1a1ae193409b639d7d46779ef2fe25aaa8)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized, ::`[tensorflow::InputList](/versions/r2.1/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_defaults, int64 num_sparse, const gtl::ArraySlice\u003c string \u003e & sparse_keys, const gtl::ArraySlice\u003c string \u003e & dense_keys, const DataTypeSlice & sparse_types, const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|\n| [dense_values](#classtensorflow_1_1ops_1_1_parse_single_example_1a47aea5050a1c195f45e106a7e5dd8d6c) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [operation](#classtensorflow_1_1ops_1_1_parse_single_example_1a653e666e79f4a510ce99022030457306) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_parse_single_example_1aff26528d71218f864c4bbe158da75497) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_shapes](#classtensorflow_1_1ops_1_1_parse_single_example_1a43c18746bd9c93c475b6f796e90cf197) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_parse_single_example_1a0dbd7fd1ac19943db8a06f1004a43731) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\nPublic attributes\n-----------------\n\n### dense_values\n\n```scdoc\n::tensorflow::OutputList dense_values\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::OutputList sparse_indices\n``` \n\n### sparse_shapes\n\n```scdoc\n::tensorflow::OutputList sparse_shapes\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::OutputList sparse_values\n``` \n\nPublic functions\n----------------\n\n### ParseSingleExample\n\n```gdscript\n ParseSingleExample(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized,\n ::tensorflow::InputList dense_defaults,\n int64 num_sparse,\n const gtl::ArraySlice\u003c string \u003e & sparse_keys,\n const gtl::ArraySlice\u003c string \u003e & dense_keys,\n const DataTypeSlice & sparse_types,\n const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes\n)\n```"]]