Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: SparseTensorDenseMatMul
#include <sparse_ops.h>
SparseTensor (derece 2) "A"yı yoğun matris "B" ile çarpın .
Özet
A'nın endeksleri üzerinde herhangi bir geçerlilik kontrolü yapılmaz. Ancak en iyi davranış için aşağıdaki giriş formatı önerilir:
if adjoint_a == false: A, sözlükbilimsel olarak artan düzende sıralanmalıdır. Emin değilseniz SparseReorder'ı kullanın. if adjoint_a == true: A, artan boyut 1'e göre sıralanmalıdır (yani, "büyük satır" sırası yerine "büyük sütun" sırası).
Argümanlar:
- kapsam: Bir Kapsam nesnesi
- a_endeksler: 2-B.
SparseTensor
indices
, boyut [nnz, 2]
Matris. - a_değerleri: 1-D.
SparseTensor
values
, boyut [nnz]
Vector. - a_şekli: 1-D.
SparseTensor
shape
, boyut [2]
Vektörü. - b: 2-D. Yoğun bir Matrix.
İsteğe bağlı özellikler (bkz. Attrs
):
- adjoint_a: Matris çarpımında A'nın ekini kullanın. Eğer A karmaşıksa, bu devrik(bağlaç(A))'dır. Aksi halde devrik(A) olur.
- adjoint_b: Matris çarpımında B'nin ekini kullanın. Eğer B karmaşıksa, bu devrik(bağlaç(B))'dir. Aksi halde devrik(B) olur.
İade:
Genel özellikler
Kamu işlevleri
düğüm
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operatör::tensorflow::Çıktı
operator::tensorflow::Output() const
Genel statik işlevler
EkA
Attrs AdjointA(
bool x
)
EkB
Attrs AdjointB(
bool x
)
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-25 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::SparseTensorDenseMatMul Class Reference\n\ntensorflow::ops::SparseTensorDenseMatMul\n========================================\n\n`#include \u003csparse_ops.h\u003e`\n\n[Multiply](/versions/r2.1/api_docs/cc/class/tensorflow/ops/multiply#classtensorflow_1_1ops_1_1_multiply) SparseTensor (of rank 2) \"A\" by dense matrix \"B\".\n\nSummary\n-------\n\nNo validity checking is performed on the indices of A. However, the following input format is recommended for optimal behavior:\n\nif adjoint_a == false: A should be sorted in lexicographically increasing order. Use [SparseReorder](/versions/r2.1/api_docs/cc/class/tensorflow/ops/sparse-reorder#classtensorflow_1_1ops_1_1_sparse_reorder) if you're not sure. if adjoint_a == true: A should be sorted in order of increasing dimension 1 (i.e., \"column major\" order instead of \"row major\" order).\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- a_indices: 2-D. The `indices` of the `SparseTensor`, size `[nnz, 2]` Matrix.\n- a_values: 1-D. The `values` of the `SparseTensor`, size `[nnz]` Vector.\n- a_shape: 1-D. The `shape` of the `SparseTensor`, size `[2]` Vector.\n- b: 2-D. A dense Matrix.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-tensor-dense-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1_1_attrs)):\n\n- adjoint_a: Use the adjoint of A in the matrix multiply. If A is complex, this is transpose(conj(A)). Otherwise it's transpose(A).\n- adjoint_b: Use the adjoint of B in the matrix multiply. If B is complex, this is transpose(conj(B)). Otherwise it's transpose(B).\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The product tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [SparseTensorDenseMatMul](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1adf1f689b8b8d0d72c059efbea5fb9cac)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_values, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_shape, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b)` ||\n| [SparseTensorDenseMatMul](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a3643c83b6940a54319e70b0bc094f948)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_indices, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_values, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` a_shape, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` b, const `[SparseTensorDenseMatMul::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-tensor-dense-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a5213c7ac11f10109585773e8fe2cd041) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [product](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a8895f99af9af5585d8bd937b817bb0ae) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|---------------------------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a3c65317b9c1886136c7de4e03ec51641)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1ac394c138be85d3c36ae20b40f867d72c)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a888b8f4b59aea6d4ff0bdeeba2ad5338)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [AdjointA](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1a972ac5b3a5538d477e96e8d1d857ccca)`(bool x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-tensor-dense-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1_1_attrs) |\n| [AdjointB](#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1ac3e772adcb84c991bdd702ba2f6f7b98)`(bool x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-tensor-dense-mat-mul/attrs#structtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::SparseTensorDenseMatMul::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/sparse-tensor-dense-mat-mul/attrs) | Optional attribute setters for [SparseTensorDenseMatMul](/versions/r2.1/api_docs/cc/class/tensorflow/ops/sparse-tensor-dense-mat-mul#classtensorflow_1_1ops_1_1_sparse_tensor_dense_mat_mul). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### product\n\n```text\n::tensorflow::Output product\n``` \n\nPublic functions\n----------------\n\n### SparseTensorDenseMatMul\n\n```gdscript\n SparseTensorDenseMatMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a_indices,\n ::tensorflow::Input a_values,\n ::tensorflow::Input a_shape,\n ::tensorflow::Input b\n)\n``` \n\n### SparseTensorDenseMatMul\n\n```gdscript\n SparseTensorDenseMatMul(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input a_indices,\n ::tensorflow::Input a_values,\n ::tensorflow::Input a_shape,\n ::tensorflow::Input b,\n const SparseTensorDenseMatMul::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### AdjointA\n\n```text\nAttrs AdjointA(\n bool x\n)\n``` \n\n### AdjointB\n\n```text\nAttrs AdjointB(\n bool x\n)\n```"]]