Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
tensor akışı:: işlem:: QuantizeAndDequantizeV2:: Öznitelikler
#include <array_ops.h>
QuantizeAndDequantizeV2 için isteğe bağlı öznitelik ayarlayıcılar.
Özet
Kamu işlevleri |
---|
Axis (int64 x) | Belirtilirse, bu eksen bir kanal veya dilim ekseni olarak ele alınır ve bu eksen boyunca her kanal veya dilim için ayrı bir niceleme aralığı kullanılır. |
NarrowRange (bool x) | True ise, nicelenmiş minimum değerin mutlak değeri, nicelenmiş maksimum değerden 1 daha büyük olmak yerine aynıdır. |
NumBits (int64 x) | Nicelemenin bit genişliği. |
RangeGiven (bool x) | Aralığın verilip verilmediği veya input tensöründen belirlenmesi gerekip gerekmediği. |
RoundMode (StringPiece x) | 'Round_mode' özelliği, kayan değer değerlerinin nicelenmiş eşdeğerlerine yuvarlanmasında hangi yuvarlama eşitlik bozma algoritmasının kullanılacağını kontrol eder. |
SignedInput (bool x) | Nicelemenin imzalı veya imzasız olup olmadığı. |
Genel özellikler
eksen_
int64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::axis_ = -1
dar_aralık_
bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::narrow_range_ = false
num_bits_
int64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::num_bits_ = 8
range_given_
bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::range_given_ = false
round_mode_
StringPiece tensorflow::ops::QuantizeAndDequantizeV2::Attrs::round_mode_ = "HALF_TO_EVEN"
bool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::signed_input_ = true
Kamu işlevleri
Eksen
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::Axis(
int64 x
)
Belirtilirse, bu eksen bir kanal veya dilim ekseni olarak ele alınır ve bu eksen boyunca her kanal veya dilim için ayrı bir niceleme aralığı kullanılır.
Varsayılan -1'dir
Dar Aralık
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NarrowRange(
bool x
)
True ise, nicelenmiş minimum değerin mutlak değeri, nicelenmiş maksimum değerden 1 büyük olmak yerine aynıdır.
yani 8 bit niceleme için minimum değer -128 yerine -127'dir.
Varsayılanlar yanlıştır
NumBits
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NumBits(
int64 x
)
Nicelemenin bit genişliği.
Varsayılan 8'dir
Verilen Aralık
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RangeGiven(
bool x
)
Aralığın verilip verilmediği veya input
tensöründen belirlenmesi gerekip gerekmediği.
Varsayılanlar yanlıştır
Yuvarlak Mod
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RoundMode(
StringPiece x
)
'Round_mode' özelliği, kayan değer değerlerinin nicelenmiş eşdeğerlerine yuvarlanmasında hangi yuvarlama eşitlik bozma algoritmasının kullanılacağını kontrol eder.
Şu anda aşağıdaki yuvarlama modları desteklenmektedir:
- HALF_TO_EVEN: bu varsayılan round_mode'dur.
- HALF_UP: pozitife doğru yuvarlar. Bu modda 7,5, 8'e, -7,5 ise -7'ye yuvarlanır.
Varsayılan olarak "HALF_TO_EVEN"
TF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::SignedInput(
bool x
)
Nicelemenin imzalı veya imzasız olup olmadığı.
(aslında bu signed_output
olarak adlandırılması gerekirdi)
Varsayılanlar true'dur
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-25 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-25 UTC."],[],[],null,["# tensorflow::ops::QuantizeAndDequantizeV2::Attrs Struct Reference\n\ntensorflow::ops::QuantizeAndDequantizeV2::Attrs\n===============================================\n\n`#include \u003carray_ops.h\u003e`\n\nOptional attribute setters for [QuantizeAndDequantizeV2](/versions/r2.1/api_docs/cc/class/tensorflow/ops/quantize-and-dequantize-v2#classtensorflow_1_1ops_1_1_quantize_and_dequantize_v2).\n\nSummary\n-------\n\n| ### Public attributes ||\n|----------------------------------------------------------------------------------------------------------------------------------------|---------------|\n| [axis_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a315bdca31eedd36ca93926e243fa1936)` = -1` | `int64` |\n| [narrow_range_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1adf347e0c1f8214c14d7694ae285cc9d0)` = false` | `bool` |\n| [num_bits_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a11159f89f2414130b6a3ad313b27716c)` = 8` | `int64` |\n| [range_given_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a865cf4c82b9089b872eb9b918531f2db)` = false` | `bool` |\n| [round_mode_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a6dfc7a75f4a69171c6497bb1edfa0d05)` = \"HALF_TO_EVEN\"` | `StringPiece` |\n| [signed_input_](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a790cd895eec69aba604ac8e9cb7f8a9f)` = true` | `bool` |\n\n| ### Public functions ||\n|------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [Axis](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a763f00e13bdab9fb43c917bbc70cf634)`(int64 x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) If specified, this axis is treated as a channel or slice axis, and a separate quantization range is used for each channel or slice along this axis. |\n| [NarrowRange](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1afaceca0792d45c8137aeb043c8cfda94)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) If True, then the absolute value of the quantized minimum value is the same as the quantized maximum value, instead of 1 greater. |\n| [NumBits](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a76057cdbc84759b92af376d7af6e5542)`(int64 x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) The bitwidth of the quantization. |\n| [RangeGiven](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1a6fa06a82baf6f5d343626b0ff362f28b)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) Whether the range is given or should be determined from the `input` tensor. |\n| [RoundMode](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1abbc6241855f1eb74e6c30f9bb38a9bea)`(StringPiece x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) The 'round_mode' attribute controls which rounding tie-breaking algorithm is used when rounding float values to their quantized equivalents. |\n| [SignedInput](#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs_1acc49af3428f348e5f27485c3d72e5598)`(bool x)` | `TF_MUST_USE_RESULT `[Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/quantize-and-dequantize-v2/attrs#structtensorflow_1_1ops_1_1_quantize_and_dequantize_v2_1_1_attrs) Whether the quantization is signed or unsigned. |\n\nPublic attributes\n-----------------\n\n### axis_\n\n```scdoc\nint64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::axis_ = -1\n``` \n\n### narrow_range_\n\n```scdoc\nbool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::narrow_range_ = false\n``` \n\n### num_bits_\n\n```scdoc\nint64 tensorflow::ops::QuantizeAndDequantizeV2::Attrs::num_bits_ = 8\n``` \n\n### range_given_\n\n```scdoc\nbool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::range_given_ = false\n``` \n\n### round_mode_\n\n```scdoc\nStringPiece tensorflow::ops::QuantizeAndDequantizeV2::Attrs::round_mode_ = \"HALF_TO_EVEN\"\n``` \n\n### signed_input_\n\n```scdoc\nbool tensorflow::ops::QuantizeAndDequantizeV2::Attrs::signed_input_ = true\n``` \n\nPublic functions\n----------------\n\n### Axis\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::Axis(\n int64 x\n)\n``` \nIf specified, this axis is treated as a channel or slice axis, and a separate quantization range is used for each channel or slice along this axis.\n\nDefaults to -1 \n\n### NarrowRange\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NarrowRange(\n bool x\n)\n``` \nIf True, then the absolute value of the quantized minimum value is the same as the quantized maximum value, instead of 1 greater.\n\ni.e. for 8 bit quantization, the minimum value is -127 instead of -128.\n\nDefaults to false \n\n### NumBits\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::NumBits(\n int64 x\n)\n``` \nThe bitwidth of the quantization.\n\nDefaults to 8 \n\n### RangeGiven\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RangeGiven(\n bool x\n)\n``` \nWhether the range is given or should be determined from the `input` tensor.\n\nDefaults to false \n\n### RoundMode\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::RoundMode(\n StringPiece x\n)\n``` \nThe 'round_mode' attribute controls which rounding tie-breaking algorithm is used when rounding float values to their quantized equivalents.\n\nThe following rounding modes are currently supported:\n\n\n- HALF_TO_EVEN: this is the default round_mode.\n- HALF_UP: round towards positive. In this mode 7.5 rounds up to 8 and -7.5 rounds up to -7.\n\n\u003cbr /\u003e\n\nDefaults to \"HALF_TO_EVEN\" \n\n### SignedInput\n\n```scdoc\nTF_MUST_USE_RESULT Attrs tensorflow::ops::QuantizeAndDequantizeV2::Attrs::SignedInput(\n bool x\n)\n``` \nWhether the quantization is signed or unsigned.\n\n(actually this parameter should have been called **`signed_output`**)\n\nDefaults to true"]]