संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: Conv3D
#include <nn_ops.h>
5-डी input
और filter
टेंसर दिए गए 3-डी कनवल्शन की गणना करता है।
सारांश
सिग्नल प्रोसेसिंग में, क्रॉस-सहसंबंध दो तरंग रूपों की समानता का एक माप है, जो उनमें से एक पर लागू समय-अंतराल के कार्य के रूप में होता है। इसे स्लाइडिंग डॉट उत्पाद या स्लाइडिंग इनर-प्रोडक्ट के रूप में भी जाना जाता है।
हमारा Conv3D क्रॉस-सहसंबंध का एक रूप लागू करता है।
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- इनपुट: आकार
[batch, in_depth, in_height, in_width, in_channels]
। - फ़िल्टर: आकार
[filter_depth, filter_height, filter_width, in_channels, out_channels]
। in_channels
input
और filter
के बीच मेल खाना चाहिए। - स्ट्राइड्स: लंबाई का 1-डी टेंसर 5.
input
के प्रत्येक आयाम के लिए स्लाइडिंग विंडो की स्ट्राइड। strides[0] = strides[4] = 1
होना चाहिए। - पैडिंग: उपयोग करने के लिए पैडिंग एल्गोरिदम का प्रकार।
वैकल्पिक विशेषताएँ (देखें Attrs
):
- data_format: इनपुट और आउटपुट डेटा का डेटा प्रारूप। डिफ़ॉल्ट प्रारूप "एनडीएचडब्ल्यूसी" के साथ, डेटा को इस क्रम में संग्रहीत किया जाता है: [बैच, इन_डेप्थ, इन_हाइट, इन_विड्थ, इन_चैनल्स]। वैकल्पिक रूप से, प्रारूप "एनसीडीएचडब्ल्यू" हो सकता है, डेटा भंडारण क्रम है: [बैच, इन_चैनल्स, इन_डेप्थ, इन_हाइट, इन_विड्थ]।
- फैलाव: लंबाई का 1-डी टेंसर 5.
input
के प्रत्येक आयाम के लिए फैलाव कारक। यदि k > 1 पर सेट किया जाता है, तो उस आयाम पर प्रत्येक फ़िल्टर तत्व के बीच k-1 छोड़ी गई कोशिकाएँ होंगी। आयाम क्रम data_format
के मान से निर्धारित होता है, विवरण के लिए ऊपर देखें। बैच में फैलाव और गहराई आयाम 1 होना चाहिए।
रिटर्न:
सार्वजनिक स्थैतिक कार्य |
---|
DataFormat (StringPiece x) | |
Dilations (const gtl::ArraySlice< int > & x) | |
सार्वजनिक गुण
सार्वजनिक समारोह
नोड
::tensorflow::Node * node() const
operator::tensorflow::Input() const
ऑपरेटर::टेन्सरफ़्लो::आउटपुट
operator::tensorflow::Output() const
सार्वजनिक स्थैतिक कार्य
Attrs DataFormat(
StringPiece x
)
फैलाव
Attrs Dilations(
const gtl::ArraySlice< int > & x
)
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::Conv3D Class Reference\n\ntensorflow::ops::Conv3D\n=======================\n\n`#include \u003cnn_ops.h\u003e`\n\nComputes a 3-D convolution given 5-D `input` and `filter` tensors.\n\nSummary\n-------\n\nIn signal processing, cross-correlation is a measure of similarity of two waveforms as a function of a time-lag applied to one of them. This is also known as a sliding dot product or sliding inner-product.\n\nOur [Conv3D](/versions/r2.1/api_docs/cc/class/tensorflow/ops/conv3-d#classtensorflow_1_1ops_1_1_conv3_d) implements a form of cross-correlation.\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- input: Shape `[batch, in_depth, in_height, in_width, in_channels]`.\n- filter: Shape `[filter_depth, filter_height, filter_width, in_channels, out_channels]`. `in_channels` must match between `input` and `filter`.\n- strides: 1-D tensor of length 5. The stride of the sliding window for each dimension of `input`. Must have `strides[0] = strides[4] = 1`.\n- padding: The type of padding algorithm to use.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs)):\n\n- data_format: The data format of the input and output data. With the default format \"NDHWC\", the data is stored in the order of: \\[batch, in_depth, in_height, in_width, in_channels\\]. Alternatively, the format could be \"NCDHW\", the data storage order is: \\[batch, in_channels, in_depth, in_height, in_width\\].\n- dilations: 1-D tensor of length 5. The dilation factor for each dimension of `input`. If set to k \\\u003e 1, there will be k-1 skipped cells between each filter element on that dimension. The dimension order is determined by the value of `data_format`, see above for details. Dilations in the batch and depth dimensions must be 1.\n\n\u003cbr /\u003e\n\nReturns:\n\n- [Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output): The output tensor.\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [Conv3D](#classtensorflow_1_1ops_1_1_conv3_d_1aef63039997c4f9586d2b8627e3cf5c5a)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding)` ||\n| [Conv3D](#classtensorflow_1_1ops_1_1_conv3_d_1abb396c1cb8bf48f57ad11862ac7406ad)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` input, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` filter, const gtl::ArraySlice\u003c int \u003e & strides, StringPiece padding, const `[Conv3D::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_conv3_d_1a34a87b1c84b82ab0a1dec637ee277ced) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [output](#classtensorflow_1_1ops_1_1_conv3_d_1a426b9a63272f1905184fdfd1b78ba33a) | `::`[tensorflow::Output](/versions/r2.1/api_docs/cc/class/tensorflow/output#classtensorflow_1_1_output) |\n\n| ### Public functions ||\n|-------------------------------------------------------------------------------------------------------------------|------------------------|\n| [node](#classtensorflow_1_1ops_1_1_conv3_d_1a33ab1a0f2fa69089a8f835175d1dc732)`() const ` | `::tensorflow::Node *` |\n| [operator::tensorflow::Input](#classtensorflow_1_1ops_1_1_conv3_d_1a418b91ef5b6437901248965d572533e5)`() const ` | ` ` ` ` |\n| [operator::tensorflow::Output](#classtensorflow_1_1ops_1_1_conv3_d_1abebfb46d5b9c472aebb4f25ad6d2eeb6)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|\n| [DataFormat](#classtensorflow_1_1ops_1_1_conv3_d_1a148ca9c798353ee9073c60f57e45a41f)`(StringPiece x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs) |\n| [Dilations](#classtensorflow_1_1ops_1_1_conv3_d_1a90d138624ebc69f365e225d25ece6e2a)`(const gtl::ArraySlice\u003c int \u003e & x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs#structtensorflow_1_1ops_1_1_conv3_d_1_1_attrs) |\n\n| ### Structs ||\n|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::Conv3D::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/conv3-d/attrs) | Optional attribute setters for [Conv3D](/versions/r2.1/api_docs/cc/class/tensorflow/ops/conv3-d#classtensorflow_1_1ops_1_1_conv3_d). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\n### output\n\n```text\n::tensorflow::Output output\n``` \n\nPublic functions\n----------------\n\n### Conv3D\n\n```gdscript\n Conv3D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding\n)\n``` \n\n### Conv3D\n\n```gdscript\n Conv3D(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input input,\n ::tensorflow::Input filter,\n const gtl::ArraySlice\u003c int \u003e & strides,\n StringPiece padding,\n const Conv3D::Attrs & attrs\n)\n``` \n\n### node\n\n```gdscript\n::tensorflow::Node * node() const \n``` \n\n### operator::tensorflow::Input\n\n```gdscript\n operator::tensorflow::Input() const \n``` \n\n### operator::tensorflow::Output\n\n```gdscript\n operator::tensorflow::Output() const \n``` \n\nPublic static functions\n-----------------------\n\n### DataFormat\n\n```text\nAttrs DataFormat(\n StringPiece x\n)\n``` \n\n### Dilations\n\n```gdscript\nAttrs Dilations(\n const gtl::ArraySlice\u003c int \u003e & x\n)\n```"]]