संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: ParseExampleV2
#include <parsing_ops.h>
tf.example protos (स्ट्रिंग्स के रूप में) के एक वेक्टर को टाइप किए गए टेंसर में बदल देता है।
सारांश
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- क्रमबद्ध: एक अदिश या वेक्टर जिसमें द्विआधारी क्रमबद्ध उदाहरण प्रोटोज़ होते हैं।
- नाम: एक टेंसर जिसमें क्रमबद्ध प्रोटो के नाम होते हैं।
serialized
टेंसर के साथ 1:1 से मेल खाता है। उदाहरण के लिए, संबंधित क्रमबद्ध प्रोटोज़ के लिए तालिका कुंजी (वर्णनात्मक) नाम शामिल हो सकते हैं। ये पूरी तरह से डिबगिंग उद्देश्यों के लिए उपयोगी हैं, और यहां मूल्यों की उपस्थिति का आउटपुट पर कोई प्रभाव नहीं पड़ता है। यदि कोई नाम उपलब्ध नहीं है तो यह एक खाली वेक्टर भी हो सकता है। यदि गैर-रिक्त है, तो इस टेंसर का आकार "क्रमबद्ध" के समान होना चाहिए। - sparse_keys: स्ट्रिंग्स का वेक्टर। उदाहरणों की विशेषताओं में अपेक्षित कुंजियाँ विरल मानों से संबद्ध हैं।
- सघन_कुंजियाँ: स्ट्रिंग्स का वेक्टर। उदाहरणों की विशेषताओं में अपेक्षित कुंजियाँ सघन मानों से संबद्ध हैं।
- रैग्ड_कीज़: स्ट्रिंग्स का वेक्टर। उदाहरणों की विशेषताओं में अपेक्षित कुंजियाँ रैग्ड मानों से संबद्ध हैं।
- सघन_डिफ़ॉल्ट्स: टेंसरों की एक सूची (कुछ खाली हो सकते हैं)।
dense_keys
के साथ 1:1 से मेल खाता है। जब उदाहरण के फीचर_मैप में Dens_key[j] का अभाव होता है, तोdens_defaults[j] डिफ़ॉल्ट मान प्रदान करता है। यदिडेंस_डिफॉल्ट्स[जे] के लिए एक खाली टेंसर प्रदान किया जाता है, तो फ़ीचर डेंस_कीज़[जे] की आवश्यकता होती है। इनपुट प्रकार का अनुमान Dens_defaults[j] से लगाया जाता है, भले ही वह खाली हो। यदि सघन_डिफॉल्ट्स[जे] खाली नहीं है, और सघन_आकार[जे] पूरी तरह से परिभाषित है, तो सघन_डिफॉल्ट्स[जे] का आकार सघन_आकार[जे] से मेल खाना चाहिए। यदिdens_shapes[j] में एक अपरिभाषित प्रमुख आयाम (चर स्ट्राइड्स डेंस फीचर) है, तोdens_defaults[j] में एक ही तत्व होना चाहिए: पैडिंग तत्व। - num_sparse: विरल कुंजियों की संख्या.
- sparse_types:
num_sparse
प्रकारों की एक सूची; प्रत्येक फ़ीचर में डेटा के प्रकार sparse_keys में दिए गए हैं। वर्तमान में ParseExample DT_FLOAT (FloatList), DT_INT64 (Int64List), और DT_STRING (बाइट्सलिस्ट) का समर्थन करता है। - रैग्ड_वैल्यू_टाइप्स:
num_ragged
प्रकारों की एक सूची; प्रत्येक फ़ीचर में डेटा के प्रकार रैग्ड_कीज़ में दिए गए हैं (जहां num_ragged = sparse_keys.size()
)। वर्तमान में ParseExample DT_FLOAT (FloatList), DT_INT64 (Int64List), और DT_STRING (बाइट्सलिस्ट) का समर्थन करता है। - रैग्ड_स्प्लिट_टाइप्स:
num_ragged
प्रकारों की एक सूची; प्रत्येक फ़ीचर में row_splits के डेटा प्रकार ragged_keys में दिए गए हैं (जहाँ num_ragged = sparse_keys.size()
)। DT_INT32 या DT_INT64 हो सकता है. - सघन_आकृतियाँ:
num_dense
आकृतियों की एक सूची; प्रत्येक फ़ीचर में डेटा के आकार सघन_कीज़ में दिए गए हैं (जहाँ num_dense = dense_keys.size()
)। फ़ीचर में Dens_key[j] से संबंधित तत्वों की संख्या हमेशा Dens_shapes[j].NumEntries() के बराबर होनी चाहिए। यदि सघन_आकार[j] == (D0, D1, ..., DN) तो आउटपुट का आकार Tensor Dens_values[j] होगा (|serialized|, D0, D1, ..., DN): सघन आउटपुट हैं बस इनपुट को बैच द्वारा पंक्तिबद्ध किया गया है। यहdens_shapes[j] = (-1, D1, ..., DN) के लिए काम करता है। इस स्थिति में आउटपुट Tensordens_values [j] का आकार (|serialized|, M, D1, .., DN) होगा, जहां M लंबाई D1 * .... * DN के तत्वों के ब्लॉक की अधिकतम संख्या है , इनपुट में सभी मिनीबैच प्रविष्टियों में। लंबाई D1 * ... * DN के तत्वों के M से कम ब्लॉक वाली किसी भी मिनीबैच प्रविष्टि को दूसरे आयाम के साथ संबंधित default_value स्केलर तत्व के साथ जोड़ा जाएगा।
रिटर्न:
-
OutputList
sparse_indices -
OutputList
sparse_values -
OutputList
sparse_shapes -
OutputList
सघन_मूल्य -
OutputList
रैग्ड_वैल्यू -
OutputList
रैग्ड_रो_स्प्लिट्स
निर्माता और विध्वंसक |
---|
ParseExampleV2 (const :: tensorflow::Scope & scope, :: tensorflow::Input serialized, :: tensorflow::Input names, :: tensorflow::Input sparse_keys, :: tensorflow::Input dense_keys, :: tensorflow::Input ragged_keys, :: tensorflow::InputList dense_defaults, int64 num_sparse, const DataTypeSlice & sparse_types, const DataTypeSlice & ragged_value_types, const DataTypeSlice & ragged_split_types, const gtl::ArraySlice< PartialTensorShape > & dense_shapes) |
सार्वजनिक गुण
सार्वजनिक समारोह
ParseExampleV2
ParseExampleV2(
const ::tensorflow::Scope & scope,
::tensorflow::Input serialized,
::tensorflow::Input names,
::tensorflow::Input sparse_keys,
::tensorflow::Input dense_keys,
::tensorflow::Input ragged_keys,
::tensorflow::InputList dense_defaults,
int64 num_sparse,
const DataTypeSlice & sparse_types,
const DataTypeSlice & ragged_value_types,
const DataTypeSlice & ragged_split_types,
const gtl::ArraySlice< PartialTensorShape > & dense_shapes
)
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::ParseExampleV2 Class Reference\n\ntensorflow::ops::ParseExampleV2\n===============================\n\n`#include \u003cparsing_ops.h\u003e`\n\nTransforms a vector of tf.Example protos (as strings) into typed tensors.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized: A scalar or vector containing binary serialized Example protos.\n- names: A tensor containing the names of the serialized protos. Corresponds 1:1 with the `serialized` tensor. May contain, for example, table key (descriptive) names for the corresponding serialized protos. These are purely useful for debugging purposes, and the presence of values here has no effect on the output. May also be an empty vector if no names are available. If non-empty, this tensor must have the same shape as \"serialized\".\n- sparse_keys: Vector of strings. The keys expected in the Examples' features associated with sparse values.\n- dense_keys: Vector of strings. The keys expected in the Examples' features associated with dense values.\n- ragged_keys: Vector of strings. The keys expected in the Examples' features associated with ragged values.\n- dense_defaults: A list of Tensors (some may be empty). Corresponds 1:1 with `dense_keys`. dense_defaults\\[j\\] provides default values when the example's feature_map lacks dense_key\\[j\\]. If an empty [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) is provided for dense_defaults\\[j\\], then the Feature dense_keys\\[j\\] is required. The input type is inferred from dense_defaults\\[j\\], even when it's empty. If dense_defaults\\[j\\] is not empty, and dense_shapes\\[j\\] is fully defined, then the shape of dense_defaults\\[j\\] must match that of dense_shapes\\[j\\]. If dense_shapes\\[j\\] has an undefined major dimension (variable strides dense feature), dense_defaults\\[j\\] must contain a single element: the padding element.\n- num_sparse: The number of sparse keys.\n- sparse_types: A list of `num_sparse` types; the data types of data in each Feature given in sparse_keys. Currently the [ParseExample](/versions/r2.1/api_docs/cc/class/tensorflow/ops/parse-example#classtensorflow_1_1ops_1_1_parse_example) supports DT_FLOAT (FloatList), DT_INT64 (Int64List), and DT_STRING (BytesList).\n- ragged_value_types: A list of `num_ragged` types; the data types of data in each Feature given in ragged_keys (where `num_ragged = sparse_keys.size()`). Currently the [ParseExample](/versions/r2.1/api_docs/cc/class/tensorflow/ops/parse-example#classtensorflow_1_1ops_1_1_parse_example) supports DT_FLOAT (FloatList), DT_INT64 (Int64List), and DT_STRING (BytesList).\n- ragged_split_types: A list of `num_ragged` types; the data types of row_splits in each Feature given in ragged_keys (where `num_ragged = sparse_keys.size()`). May be DT_INT32 or DT_INT64.\n- dense_shapes: A list of `num_dense` shapes; the shapes of data in each Feature given in dense_keys (where `num_dense = dense_keys.size()`). The number of elements in the Feature corresponding to dense_key\\[j\\] must always equal dense_shapes\\[j\\].NumEntries(). If dense_shapes\\[j\\] == (D0, D1, ..., DN) then the shape of output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (\\|serialized\\|, D0, D1, ..., DN): The dense outputs are just the inputs row-stacked by batch. This works for dense_shapes\\[j\\] = (-1, D1, ..., DN). In this case the shape of the output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (\\|serialized\\|, M, D1, .., DN), where M is the maximum number of blocks of elements of length D1 \\* .... \\* DN, across all minibatch entries in the input. [Any](/versions/r2.1/api_docs/cc/class/tensorflow/ops/any#classtensorflow_1_1ops_1_1_any) minibatch entry with less than M blocks of elements of length D1 \\* ... \\* DN will be padded with the corresponding default_value scalar element along the second dimension.\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList` sparse_indices\n- `OutputList` sparse_values\n- `OutputList` sparse_shapes\n- `OutputList` dense_values\n- `OutputList` ragged_values\n- `OutputList` ragged_row_splits\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ParseExampleV2](#classtensorflow_1_1ops_1_1_parse_example_v2_1ab4e11094ad7703df99aa576d6ad67425)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` names, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` sparse_keys, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` dense_keys, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` ragged_keys, ::`[tensorflow::InputList](/versions/r2.1/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_defaults, int64 num_sparse, const DataTypeSlice & sparse_types, const DataTypeSlice & ragged_value_types, const DataTypeSlice & ragged_split_types, const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes)` ||\n\n| ### Public attributes ||\n|------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|\n| [dense_values](#classtensorflow_1_1ops_1_1_parse_example_v2_1a470bd99f28093905ebb2729aa4cedce6) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [operation](#classtensorflow_1_1ops_1_1_parse_example_v2_1a514d8b2a197c9df22325d12a3b74a46f) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [ragged_row_splits](#classtensorflow_1_1ops_1_1_parse_example_v2_1a295efa8fb5cdb697c1ebcef3906c9e78) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [ragged_values](#classtensorflow_1_1ops_1_1_parse_example_v2_1a67d9cc60e2546f180462bf8f61299b41) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_parse_example_v2_1a0c78755e58595fadb6b7989979fbd03e) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_shapes](#classtensorflow_1_1ops_1_1_parse_example_v2_1a272ff8e836298c301eb6694d25fb070d) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_parse_example_v2_1a6b6a124a63884bcf1a02968c7caf0073) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\nPublic attributes\n-----------------\n\n### dense_values\n\n```scdoc\n::tensorflow::OutputList dense_values\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### ragged_row_splits\n\n```scdoc\n::tensorflow::OutputList ragged_row_splits\n``` \n\n### ragged_values\n\n```scdoc\n::tensorflow::OutputList ragged_values\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::OutputList sparse_indices\n``` \n\n### sparse_shapes\n\n```scdoc\n::tensorflow::OutputList sparse_shapes\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::OutputList sparse_values\n``` \n\nPublic functions\n----------------\n\n### ParseExampleV2\n\n```gdscript\n ParseExampleV2(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized,\n ::tensorflow::Input names,\n ::tensorflow::Input sparse_keys,\n ::tensorflow::Input dense_keys,\n ::tensorflow::Input ragged_keys,\n ::tensorflow::InputList dense_defaults,\n int64 num_sparse,\n const DataTypeSlice & sparse_types,\n const DataTypeSlice & ragged_value_types,\n const DataTypeSlice & ragged_split_types,\n const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes\n)\n```"]]