संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: रिसोर्सएप्लाईएडेल्टा
#include <training_ops.h>
एडडेल्टा योजना के अनुसार '*var' को अपडेट करें।
सारांश
Accum = rho() * Accum + (1 - rho()) * grad.square(); अद्यतन = (update_accum + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad; update_accum = rho() * update_accum + (1 - rho()) * update.square(); var - = अद्यतन;
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- var: एक वेरिएबल() से होना चाहिए।
- संचय: एक वेरिएबल() से होना चाहिए।
- accum_update: एक वेरिएबल() से होना चाहिए।
- एलआर: स्केलिंग कारक। एक अदिश राशि होनी चाहिए.
- आरएचओ: क्षय कारक। एक अदिश राशि होनी चाहिए.
- एप्सिलॉन: लगातार कारक। एक अदिश राशि होनी चाहिए.
- ग्रेड: ग्रेडिएंट.
वैकल्पिक विशेषताएँ (देखें Attrs
):
- उपयोग_लॉकिंग: यदि सही है, तो var, accum और update_accum टेंसर का अद्यतनीकरण लॉक द्वारा सुरक्षित किया जाएगा; अन्यथा व्यवहार अपरिभाषित है, लेकिन कम विवाद प्रदर्शित कर सकता है।
रिटर्न:
निर्माता और विध्वंसक |
---|
ResourceApplyAdadelta (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input accum_update, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input epsilon, :: tensorflow::Input grad)
|
ResourceApplyAdadelta (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input accum_update, :: tensorflow::Input lr, :: tensorflow::Input rho, :: tensorflow::Input epsilon, :: tensorflow::Input grad, const ResourceApplyAdadelta::Attrs & attrs) |
सार्वजनिक गुण
सार्वजनिक समारोह
ऑपरेटर::टेन्सरफ़्लो::ऑपरेशन
operator::tensorflow::Operation() const
सार्वजनिक स्थैतिक कार्य
लॉकिंग का उपयोग करें
Attrs UseLocking(
bool x
)
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-27 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-27 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::ResourceApplyAdadelta Class Reference\n\ntensorflow::ops::ResourceApplyAdadelta\n======================================\n\n`#include \u003ctraining_ops.h\u003e`\n\nUpdate '\\*var' according to the adadelta scheme.\n\nSummary\n-------\n\naccum = rho() \\* accum + (1 - rho()) \\* grad.square(); update = (update_accum + epsilon).sqrt() \\* (accum + epsilon()).rsqrt() \\* grad; update_accum = rho() \\* update_accum + (1 - rho()) \\* update.square(); var -= update;\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- var: Should be from a Variable().\n- accum: Should be from a Variable().\n- accum_update: Should be from a Variable().\n- lr: Scaling factor. Must be a scalar.\n- rho: Decay factor. Must be a scalar.\n- epsilon: Constant factor. Must be a scalar.\n- grad: The gradient.\n\n\u003cbr /\u003e\n\nOptional attributes (see [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/resource-apply-adadelta/attrs#structtensorflow_1_1ops_1_1_resource_apply_adadelta_1_1_attrs)):\n\n- use_locking: If True, updating of the var, accum and update_accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.\n\n\u003cbr /\u003e\n\nReturns:\n\n- the created [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation)\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ResourceApplyAdadelta](#classtensorflow_1_1ops_1_1_resource_apply_adadelta_1a4f85dc7a030d3e04af02dbcbb59ce1a9)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum_update, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad)` ||\n| [ResourceApplyAdadelta](#classtensorflow_1_1ops_1_1_resource_apply_adadelta_1a883cc46b972fbf81192d699ee52def56)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` var, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` accum_update, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` lr, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` rho, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` epsilon, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` grad, const `[ResourceApplyAdadelta::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/resource-apply-adadelta/attrs#structtensorflow_1_1ops_1_1_resource_apply_adadelta_1_1_attrs)` & attrs)` ||\n\n| ### Public attributes ||\n|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|\n| [operation](#classtensorflow_1_1ops_1_1_resource_apply_adadelta_1a4dd0008d30f0e32e1221225a4be2a2f2) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n\n| ### Public functions ||\n|--------------------------------------------------------------------------------------------------------------------------------------|---------|\n| [operator::tensorflow::Operation](#classtensorflow_1_1ops_1_1_resource_apply_adadelta_1ac80f2bfde898d7a7c247161e484d603f)`() const ` | ` ` ` ` |\n\n| ### Public static functions ||\n|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [UseLocking](#classtensorflow_1_1ops_1_1_resource_apply_adadelta_1afbd53a1956a5e15a96e9872d680893fc)`(bool x)` | [Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/resource-apply-adadelta/attrs#structtensorflow_1_1ops_1_1_resource_apply_adadelta_1_1_attrs) |\n\n| ### Structs ||\n|---------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [tensorflow::ops::ResourceApplyAdadelta::Attrs](/versions/r2.1/api_docs/cc/struct/tensorflow/ops/resource-apply-adadelta/attrs) | Optional attribute setters for [ResourceApplyAdadelta](/versions/r2.1/api_docs/cc/class/tensorflow/ops/resource-apply-adadelta#classtensorflow_1_1ops_1_1_resource_apply_adadelta). |\n\nPublic attributes\n-----------------\n\n### operation\n\n```text\nOperation operation\n``` \n\nPublic functions\n----------------\n\n### ResourceApplyAdadelta\n\n```gdscript\n ResourceApplyAdadelta(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input accum_update,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad\n)\n``` \n\n### ResourceApplyAdadelta\n\n```gdscript\n ResourceApplyAdadelta(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input var,\n ::tensorflow::Input accum,\n ::tensorflow::Input accum_update,\n ::tensorflow::Input lr,\n ::tensorflow::Input rho,\n ::tensorflow::Input epsilon,\n ::tensorflow::Input grad,\n const ResourceApplyAdadelta::Attrs & attrs\n)\n``` \n\n### operator::tensorflow::Operation\n\n```gdscript\n operator::tensorflow::Operation() const \n``` \n\nPublic static functions\n-----------------------\n\n### UseLocking\n\n```text\nAttrs UseLocking(\n bool x\n)\n```"]]