Module: tf_agents.environments.suite_gym
Stay organized with collections
Save and categorize content based on your preferences.
Suite for loading Gym Environments.
Note we use gym.spec(env_id).make() on gym envs to avoid getting a TimeLimit
wrapper on the environment. OpenAI's TimeLimit wrappers terminate episodes
without indicating if the failure is due to the time limit, or due to negative
agent behaviour. This prevents us from setting the appropriate discount value
for the final step of an episode. To prevent that we extract the step limit
from the environment specs and utilize our TimeLimit wrapper.
Functions
load(...)
: Loads the selected environment and wraps it with the specified wrappers.
wrap_env(...)
: Wraps given gym environment with TF Agent's GymWrapper.
Type Aliases
TimeLimitWrapperType
Other Members |
absolute_import
|
Instance of __future__._Feature
|
division
|
Instance of __future__._Feature
|
print_function
|
Instance of __future__._Feature
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# Module: tf_agents.environments.suite_gym\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/agents/blob/v0.19.0/tf_agents/environments/suite_gym.py) |\n\nSuite for loading Gym Environments.\n\nNote we use gym.spec(env_id).make() on gym envs to avoid getting a TimeLimit\nwrapper on the environment. OpenAI's TimeLimit wrappers terminate episodes\nwithout indicating if the failure is due to the time limit, or due to negative\nagent behaviour. This prevents us from setting the appropriate discount value\nfor the final step of an episode. To prevent that we extract the step limit\nfrom the environment specs and utilize our TimeLimit wrapper.\n\nFunctions\n---------\n\n[`load(...)`](../../tf_agents/environments/suite_gym/load): Loads the selected environment and wraps it with the specified wrappers.\n\n[`wrap_env(...)`](../../tf_agents/environments/suite_gym/wrap_env): Wraps given gym environment with TF Agent's GymWrapper.\n\nType Aliases\n------------\n\n[`TimeLimitWrapperType`](../../tf_agents/environments/suite_gym/TimeLimitWrapperType)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Other Members ------------- ||\n|-----------------|-----------------------------------|\n| absolute_import | Instance of `__future__._Feature` |\n| division | Instance of `__future__._Feature` |\n| print_function | Instance of `__future__._Feature` |\n\n\u003cbr /\u003e"]]