tf_agents.train.triggers.ReverbCheckpointTrigger
Stay organized with collections
Save and categorize content based on your preferences.
Checkpoints data from Reverb replay buffer.
Inherits From: IntervalTrigger
tf_agents.train.triggers.ReverbCheckpointTrigger(
train_step: tf.Variable,
interval: int,
reverb_client: tf_agents.typing.types.ReverbClient
)
Args |
train_step
|
tf.Variable which keeps track of the number of train steps.
|
interval
|
How often, in train_steps, the trigger will save. Note that as
long as the >= interval number of steps have passed since the last
trigger, the event gets triggered. The current value is not necessarily
interval steps away from the last triggered value.
|
reverb_client
|
the Reverb client required for checkpointing.
|
Methods
reset
View source
reset() -> None
Resets the trigger interval.
set_start
View source
set_start(
start: int
) -> None
__call__
View source
__call__(
value: int, force_trigger: bool = False
) -> None
Maybe trigger the event based on the interval.
Args |
value
|
the value for triggering.
|
force_trigger
|
If True, the trigger will be forced triggered unless the
last trigger value is equal to value .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf_agents.train.triggers.ReverbCheckpointTrigger\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/agents/blob/v0.19.0/tf_agents/train/triggers.py#L238-L264) |\n\nCheckpoints data from Reverb replay buffer.\n\nInherits From: [`IntervalTrigger`](../../../tf_agents/train/interval_trigger/IntervalTrigger) \n\n tf_agents.train.triggers.ReverbCheckpointTrigger(\n train_step: tf.Variable,\n interval: int,\n reverb_client: ../../../tf_agents/typing/types#ReverbClient\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `train_step` | [`tf.Variable`](https://www.tensorflow.org/api_docs/python/tf/Variable) which keeps track of the number of train steps. |\n| `interval` | How often, in train_steps, the trigger will save. Note that as long as the \\\u003e= `interval` number of steps have passed since the last trigger, the event gets triggered. The current value is not necessarily `interval` steps away from the last triggered value. |\n| `reverb_client` | the Reverb client required for checkpointing. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `reset`\n\n[View source](https://github.com/tensorflow/agents/blob/v0.19.0/tf_agents/train/interval_trigger.py#L67-L69) \n\n reset() -\u003e None\n\nResets the trigger interval.\n\n### `set_start`\n\n[View source](https://github.com/tensorflow/agents/blob/v0.19.0/tf_agents/train/interval_trigger.py#L71-L72) \n\n set_start(\n start: int\n ) -\u003e None\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/agents/blob/v0.19.0/tf_agents/train/interval_trigger.py#L50-L65) \n\n __call__(\n value: int, force_trigger: bool = False\n ) -\u003e None\n\nMaybe trigger the event based on the interval.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|--------------------------------------------------------------------------------------------------|\n| `value` | the value for triggering. |\n| `force_trigger` | If True, the trigger will be forced triggered unless the last trigger value is equal to `value`. |\n\n\u003cbr /\u003e"]]