tf_agents.utils.nest_utils.tile_batch
Stay organized with collections
Save and categorize content based on your preferences.
Tile the batch dimension of a (possibly nested structure of) tensor(s).
tf_agents.utils.nest_utils.tile_batch(
tensors: tf_agents.typing.types.NestedTensor
,
multiplier: tf_agents.typing.types.Int
)
Copied from tensorflow/contrib/seq2seq/python/ops/beam_search_decoder.py
For each tensor t in a (possibly nested structure) of tensors,
this function takes a tensor t shaped [batch_size, s0, s1, ...]
composed of
minibatch entries t[0], ..., t[batch_size - 1]
and tiles it to have a shape
[batch_size * multiplier, s0, s1, ...]
composed of minibatch entries
t[0], t[0], ..., t[1], t[1], ...
where each minibatch entry is repeated
multiplier
times.
Args |
tensors
|
A nested structure of Tensor shaped [batch_size, ...] .
|
multiplier
|
Python int or a Tensor. Note that if the multiplier is a tensor
the shape can not be ensured.
|
Returns |
A (possibly nested structure of) Tensor shaped
[batch_size * multiplier, ...] .
|
Raises |
ValueError
|
if tensor(s) t do not have a statically known rank or
the rank is < 1.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf_agents.utils.nest_utils.tile_batch\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/agents/blob/v0.19.0/tf_agents/utils/nest_utils.py#L1222-L1250) |\n\nTile the batch dimension of a (possibly nested structure of) tensor(s). \n\n tf_agents.utils.nest_utils.tile_batch(\n tensors: ../../../tf_agents/typing/types/NestedTensor,\n multiplier: ../../../tf_agents/typing/types/Int\n )\n\nCopied from tensorflow/contrib/seq2seq/python/ops/beam_search_decoder.py\n\nFor each tensor t in a (possibly nested structure) of tensors,\nthis function takes a tensor t shaped `[batch_size, s0, s1, ...]` composed of\nminibatch entries `t[0], ..., t[batch_size - 1]` and tiles it to have a shape\n`[batch_size * multiplier, s0, s1, ...]` composed of minibatch entries\n`t[0], t[0], ..., t[1], t[1], ...` where each minibatch entry is repeated\n`multiplier` times.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------------|-----------------------------------------------------------------------------------------------|\n| `tensors` | A nested structure of `Tensor` shaped `[batch_size, ...]`. |\n| `multiplier` | Python int or a Tensor. Note that if the multiplier is a tensor the shape can not be ensured. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A (possibly nested structure of) `Tensor` shaped `[batch_size * multiplier, ...]`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|---------------------------------------------------------------------------|\n| `ValueError` | if tensor(s) `t` do not have a statically known rank or the rank is \\\u003c 1. |\n\n\u003cbr /\u003e"]]