संग्रह की मदद से व्यवस्थित रहें
अपनी प्राथमिकताओं के आधार पर, कॉन्टेंट को सेव करें और कैटगरी में बांटें.
टेंसरफ़्लो:: ऑप्स:: ParseSingleउदाहरण
#include <parsing_ops.h>
एक tf.Example प्रोटो (एक स्ट्रिंग के रूप में) को टाइप किए गए टेंसर में बदल देता है।
सारांश
तर्क:
- स्कोप: एक स्कोप ऑब्जेक्ट
- क्रमबद्ध: एक वेक्टर जिसमें बाइनरी क्रमबद्ध उदाहरण प्रोटोस का एक बैच होता है।
- सघन_डिफ़ॉल्ट्स: टेंसर की एक सूची (कुछ खाली हो सकते हैं), जिनकी लंबाई
dense_keys
की लंबाई से मेल खाती है। जब उदाहरण के फीचर_मैप में Dens_key[j] का अभाव होता है, तोdens_defaults[j] डिफ़ॉल्ट मान प्रदान करता है। यदिडेंस_डिफॉल्ट्स[जे] के लिए एक खाली टेंसर प्रदान किया जाता है, तो फ़ीचर डेंस_कीज़[जे] की आवश्यकता होती है। इनपुट प्रकार का अनुमान Dens_defaults[j] से लगाया जाता है, भले ही वह खाली हो। यदि सघन_डिफॉल्ट्स[जे] खाली नहीं है, और सघन_आकार[जे] पूरी तरह से परिभाषित है, तो सघन_डिफॉल्ट्स[जे] का आकार सघन_आकार[जे] से मेल खाना चाहिए। यदिdens_shapes[j] में एक अपरिभाषित प्रमुख आयाम (चर स्ट्राइड्स डेंस फीचर) है, तोdens_defaults[j] में एक ही तत्व होना चाहिए: पैडिंग तत्व। - num_sparse: उदाहरण से पार्स की जाने वाली विरल सुविधाओं की संख्या। यह
sparse_keys
और sparse_types
की लंबाई से मेल खाना चाहिए। - sparse_keys:
num_sparse
स्ट्रिंग्स की एक सूची। उदाहरणों की विशेषताओं में अपेक्षित कुंजियाँ विरल मानों से संबद्ध हैं। - सघन_कुंजियाँ: उदाहरणों की विशेषताओं में अपेक्षित कुंजियाँ सघन मानों से संबद्ध हैं।
- sparse_types:
num_sparse
प्रकारों की एक सूची; प्रत्येक फ़ीचर में डेटा के प्रकार sparse_keys में दिए गए हैं। वर्तमान में ParseSingleExample ऑप DT_FLOAT (FloatList), DT_INT64 (Int64List), और DT_STRING (बाइट्सलिस्ट) का समर्थन करता है। - सघन_आकार: प्रत्येक फ़ीचर में डेटा के आकार सघन_कुंजी में दिए गए हैं। इस सूची की लंबाई
dense_keys
की लंबाई से मेल खानी चाहिए। फ़ीचर में Dens_key[j] से संबंधित तत्वों की संख्या हमेशा Dens_shapes[j].NumEntries() के बराबर होनी चाहिए। यदि सघन_आकार[j] == (D0, D1, ..., DN) तो आउटपुट Tensor Dens_values[j] का आकार (D0, D1, ..., DN) होगा: मामले में सघन_आकार[j] = (-1, डी1, ..., डीएन), आउटपुट टेंसर डेंस_वैल्यूज़[जे] का आकार (एम, डी1, .., डीएन) होगा, जहां एम लंबाई डी1 * के तत्वों के ब्लॉक की संख्या है। ... * डीएन, इनपुट में।
रिटर्न:
-
OutputList
sparse_indices -
OutputList
sparse_values -
OutputList
sparse_shapes -
OutputList
सघन_मूल्य
सार्वजनिक गुण
सार्वजनिक समारोह
ParseSingleउदाहरण
ParseSingleExample(
const ::tensorflow::Scope & scope,
::tensorflow::Input serialized,
::tensorflow::InputList dense_defaults,
int64 num_sparse,
const gtl::ArraySlice< string > & sparse_keys,
const gtl::ArraySlice< string > & dense_keys,
const DataTypeSlice & sparse_types,
const gtl::ArraySlice< PartialTensorShape > & dense_shapes
)
जब तक कुछ अलग से न बताया जाए, तब तक इस पेज की सामग्री को Creative Commons Attribution 4.0 License के तहत और कोड के नमूनों को Apache 2.0 License के तहत लाइसेंस मिला है. ज़्यादा जानकारी के लिए, Google Developers साइट नीतियां देखें. Oracle और/या इससे जुड़ी हुई कंपनियों का, Java एक रजिस्टर किया हुआ ट्रेडमार्क है.
आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया.
[null,null,["आखिरी बार 2025-07-26 (UTC) को अपडेट किया गया."],[],[],null,["# tensorflow::ops::ParseSingleExample Class Reference\n\ntensorflow::ops::ParseSingleExample\n===================================\n\n`#include \u003cparsing_ops.h\u003e`\n\nTransforms a tf.Example proto (as a string) into typed tensors.\n\nSummary\n-------\n\nArguments:\n\n- scope: A [Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope) object\n- serialized: A vector containing a batch of binary serialized Example protos.\n- dense_defaults: A list of Tensors (some may be empty), whose length matches the length of `dense_keys`. dense_defaults\\[j\\] provides default values when the example's feature_map lacks dense_key\\[j\\]. If an empty [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) is provided for dense_defaults\\[j\\], then the Feature dense_keys\\[j\\] is required. The input type is inferred from dense_defaults\\[j\\], even when it's empty. If dense_defaults\\[j\\] is not empty, and dense_shapes\\[j\\] is fully defined, then the shape of dense_defaults\\[j\\] must match that of dense_shapes\\[j\\]. If dense_shapes\\[j\\] has an undefined major dimension (variable strides dense feature), dense_defaults\\[j\\] must contain a single element: the padding element.\n- num_sparse: The number of sparse features to be parsed from the example. This must match the lengths of `sparse_keys` and `sparse_types`.\n- sparse_keys: A list of `num_sparse` strings. The keys expected in the Examples' features associated with sparse values.\n- dense_keys: The keys expected in the Examples' features associated with dense values.\n- sparse_types: A list of `num_sparse` types; the data types of data in each Feature given in sparse_keys. Currently the [ParseSingleExample](/versions/r2.1/api_docs/cc/class/tensorflow/ops/parse-single-example#classtensorflow_1_1ops_1_1_parse_single_example) op supports DT_FLOAT (FloatList), DT_INT64 (Int64List), and DT_STRING (BytesList).\n- dense_shapes: The shapes of data in each Feature given in dense_keys. The length of this list must match the length of `dense_keys`. The number of elements in the Feature corresponding to dense_key\\[j\\] must always equal dense_shapes\\[j\\].NumEntries(). If dense_shapes\\[j\\] == (D0, D1, ..., DN) then the shape of output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (D0, D1, ..., DN): In the case dense_shapes\\[j\\] = (-1, D1, ..., DN), the shape of the output [Tensor](/versions/r2.1/api_docs/cc/class/tensorflow/tensor#classtensorflow_1_1_tensor) dense_values\\[j\\] will be (M, D1, .., DN), where M is the number of blocks of elements of length D1 \\* .... \\* DN, in the input.\n\n\u003cbr /\u003e\n\nReturns:\n\n- `OutputList` sparse_indices\n- `OutputList` sparse_values\n- `OutputList` sparse_shapes\n- `OutputList` dense_values\n\n\u003cbr /\u003e\n\n| ### Constructors and Destructors ||\n|---|---|\n| [ParseSingleExample](#classtensorflow_1_1ops_1_1_parse_single_example_1a1ae193409b639d7d46779ef2fe25aaa8)`(const ::`[tensorflow::Scope](/versions/r2.1/api_docs/cc/class/tensorflow/scope#classtensorflow_1_1_scope)` & scope, ::`[tensorflow::Input](/versions/r2.1/api_docs/cc/class/tensorflow/input#classtensorflow_1_1_input)` serialized, ::`[tensorflow::InputList](/versions/r2.1/api_docs/cc/class/tensorflow/input-list#classtensorflow_1_1_input_list)` dense_defaults, int64 num_sparse, const gtl::ArraySlice\u003c string \u003e & sparse_keys, const gtl::ArraySlice\u003c string \u003e & dense_keys, const DataTypeSlice & sparse_types, const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes)` ||\n\n| ### Public attributes ||\n|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|\n| [dense_values](#classtensorflow_1_1ops_1_1_parse_single_example_1a47aea5050a1c195f45e106a7e5dd8d6c) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [operation](#classtensorflow_1_1ops_1_1_parse_single_example_1a653e666e79f4a510ce99022030457306) | [Operation](/versions/r2.1/api_docs/cc/class/tensorflow/operation#classtensorflow_1_1_operation) |\n| [sparse_indices](#classtensorflow_1_1ops_1_1_parse_single_example_1aff26528d71218f864c4bbe158da75497) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_shapes](#classtensorflow_1_1ops_1_1_parse_single_example_1a43c18746bd9c93c475b6f796e90cf197) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n| [sparse_values](#classtensorflow_1_1ops_1_1_parse_single_example_1a0dbd7fd1ac19943db8a06f1004a43731) | `::`[tensorflow::OutputList](/versions/r2.1/api_docs/cc/group/core#group__core_1gab449e6a3abd500c2f4ea93f9e89ba96c) |\n\nPublic attributes\n-----------------\n\n### dense_values\n\n```scdoc\n::tensorflow::OutputList dense_values\n``` \n\n### operation\n\n```text\nOperation operation\n``` \n\n### sparse_indices\n\n```scdoc\n::tensorflow::OutputList sparse_indices\n``` \n\n### sparse_shapes\n\n```scdoc\n::tensorflow::OutputList sparse_shapes\n``` \n\n### sparse_values\n\n```scdoc\n::tensorflow::OutputList sparse_values\n``` \n\nPublic functions\n----------------\n\n### ParseSingleExample\n\n```gdscript\n ParseSingleExample(\n const ::tensorflow::Scope & scope,\n ::tensorflow::Input serialized,\n ::tensorflow::InputList dense_defaults,\n int64 num_sparse,\n const gtl::ArraySlice\u003c string \u003e & sparse_keys,\n const gtl::ArraySlice\u003c string \u003e & dense_keys,\n const DataTypeSlice & sparse_types,\n const gtl::ArraySlice\u003c PartialTensorShape \u003e & dense_shapes\n)\n```"]]