tensorflow:: ops:: MatrixDiag
#include <array_ops.h>
Returns a batched diagonal tensor with a given batched diagonal values.
Summary
Given a diagonal, this operation returns a tensor with the diagonal and everything else padded with zeros. The diagonal is computed as follows:
Assume diagonal has k dimensions [I, J, K, ..., N], then the output is a tensor of rank k+1 with dimensions [I, J, K, ..., N, N]` where:
output[i, j, k, ..., m, n] = 1{m=n} * diagonal[i, j, k, ..., n].
For example:
# 'diagonal' is [[1, 2, 3, 4], [5, 6, 7, 8]]
and diagonal.shape = (2, 4)
tf.matrix_diag(diagonal) ==> [[[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]],
[[5, 0, 0, 0]
[0, 6, 0, 0]
[0, 0, 7, 0]
[0, 0, 0, 8]]]
which has shape (2, 4, 4)
Arguments:
- scope: A Scope object
- diagonal: Rank
k, wherek >= 1.
Returns:
Output: Rankk+1, withoutput.shape = diagonal.shape + [diagonal.shape[-1]].
Constructors and Destructors |
|
|---|---|
MatrixDiag(const ::tensorflow::Scope & scope, ::tensorflow::Input diagonal)
|
Public attributes |
|
|---|---|
operation
|
|
output
|
|
Public functions |
|
|---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Public attributes
operation
Operation operation
output
::tensorflow::Output output
Public functions
MatrixDiag
MatrixDiag( const ::tensorflow::Scope & scope, ::tensorflow::Input diagonal )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const