tensorflow::
  #include <training_ops.h>
  Update '*var' according to the adagrad scheme.
Summary
accum += grad * grad var -= lr * grad * (1 / sqrt(accum))
Arguments:
- scope: A Scope object
- var: Should be from a Variable().
- accum: Should be from a Variable().
- lr: Scaling factor. Must be a scalar.
- grad: The gradient.
Optional attributes (see Attrs):
- use_locking: If True, updating of the var and accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
- the created Operation
| Constructors and Destructors | |
|---|---|
| ResourceApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad) | |
| ResourceApplyAdagrad(const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, const ResourceApplyAdagrad::Attrs & attrs) | 
| Public attributes | |
|---|---|
| operation | |
| Public functions | |
|---|---|
| operator::tensorflow::Operation() const  | 
         | 
| Public static functions | |
|---|---|
| UpdateSlots(bool x) | |
| UseLocking(bool x) | |
| Structs | |
|---|---|
| tensorflow:: | Optional attribute setters for ResourceApplyAdagrad. | 
Public attributes
operation
Operation operation
Public functions
ResourceApplyAdagrad
ResourceApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad )
ResourceApplyAdagrad
ResourceApplyAdagrad( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input lr, ::tensorflow::Input grad, const ResourceApplyAdagrad::Attrs & attrs )
operator::tensorflow::Operation
operator::tensorflow::Operation() const
Public static functions
UpdateSlots
Attrs UpdateSlots( bool x )
UseLocking
Attrs UseLocking( bool x )