tensorflow::ops::ResourceApplyAdadelta

#include <training_ops.h>

Update '*var' according to the adadelta scheme.

accum = rho() * accum + (1 - rho()) * grad.square(); update = (update_accum + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad; update_accum = rho() * update_accum + (1 - rho()) * update.square(); var -= update;

Arguments:

  • scope: A Scope object
  • var: Should be from a Variable().
  • accum: Should be from a Variable().
  • accum_update: Should be from a Variable().
  • lr: Scaling factor. Must be a scalar.
  • rho: Decay factor. Must be a scalar.
  • epsilon: Constant factor. Must be a scalar.
  • grad: The gradient.

Optional attributes (see Attrs):

  • use_locking: If True, updating of the var, accum and update_accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

Public attributes

operation

Public functions

operator::tensorflow::Operation() const

Public static functions

UseLocking(bool x)

Public attributes

operation

Operation operation

Public functions

ResourceApplyAdadelta

 ResourceApplyAdadelta(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input accum_update,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad
)

ResourceApplyAdadelta

 ResourceApplyAdadelta(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input accum,
  ::tensorflow::Input accum_update,
  ::tensorflow::Input lr,
  ::tensorflow::Input rho,
  ::tensorflow::Input epsilon,
  ::tensorflow::Input grad,
  const ResourceApplyAdadelta::Attrs & attrs
)

operator::tensorflow::Operation

 operator::tensorflow::Operation() const 

Public static functions

UseLocking

Attrs UseLocking(
  bool x
)