tensorflow::ops::ResourceApplyAdadelta
#include <training_ops.h>
Update '*var' according to the adadelta scheme.
Summary
accum = rho() * accum + (1 - rho()) * grad.square(); update = (update_accum + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad; update_accum = rho() * update_accum + (1 - rho()) * update.square(); var -= update;
Arguments:
- scope: A Scope object
- var: Should be from a Variable().
- accum: Should be from a Variable().
- accum_update: Should be from a Variable().
- lr: Scaling factor. Must be a scalar.
- rho: Decay factor. Must be a scalar.
- epsilon: Constant factor. Must be a scalar.
- grad: The gradient.
Optional attributes (see Attrs
):
- use_locking: If True, updating of the var, accum and update_accum tensors will be protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.
Returns:
- the created
Operation
Constructors and Destructors |
|
---|---|
ResourceApplyAdadelta(const ::
|
|
ResourceApplyAdadelta(const ::
|
Public functions |
|
---|---|
operator::tensorflow::Operation() const
|
|
Public static functions |
|
---|---|
UseLocking(bool x)
|
Structs |
|
---|---|
tensorflow:: |
Optional attribute setters for ResourceApplyAdadelta. |
Public attributes
operation
Operation operation
Public functions
ResourceApplyAdadelta
ResourceApplyAdadelta( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input accum_update, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input epsilon, ::tensorflow::Input grad )
ResourceApplyAdadelta
ResourceApplyAdadelta( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input accum_update, ::tensorflow::Input lr, ::tensorflow::Input rho, ::tensorflow::Input epsilon, ::tensorflow::Input grad, const ResourceApplyAdadelta::Attrs & attrs )
operator::tensorflow::Operation
operator::tensorflow::Operation() const