tensorflow:: ops:: SparseSoftmax
#include <sparse_ops.h>
Applies softmax to a batched N-D SparseTensor.
Summary
The inputs represent an N-D SparseTensor with logical shape [..., B, C] (where N >= 2), and with indices sorted in the canonical lexicographic order.
This op is equivalent to applying the normal tf.nn.softmax() to each innermost logical submatrix with shape [B, C], but with the catch that the implicitly zero elements do not participate. Specifically, the algorithm is equivalent to the following:
(1) Applies tf.nn.softmax() to a densified view of each innermost submatrix with shape [B, C], along the size-C dimension; (2) Masks out the original implicitly-zero locations; (3) Renormalizes the remaining elements.
Hence, the SparseTensor result has exactly the same non-zero indices and shape.
Arguments:
- scope: A Scope object
- sp_indices: 2-D.
NNZ x Rmatrix with the indices of non-empty values in a SparseTensor, in canonical ordering. - sp_values: 1-D.
NNZnon-empty values corresponding tosp_indices. - sp_shape: 1-D. Shape of the input SparseTensor.
Returns:
Output: 1-D. TheNNZvalues for the resultSparseTensor.
Constructors and Destructors |
|
|---|---|
SparseSoftmax(const ::tensorflow::Scope & scope, ::tensorflow::Input sp_indices, ::tensorflow::Input sp_values, ::tensorflow::Input sp_shape)
|
Public attributes |
|
|---|---|
operation
|
|
output
|
|
Public functions |
|
|---|---|
node() const
|
::tensorflow::Node *
|
operator::tensorflow::Input() const
|
|
operator::tensorflow::Output() const
|
|
Public attributes
operation
Operation operation
output
::tensorflow::Output output
Public functions
SparseSoftmax
SparseSoftmax( const ::tensorflow::Scope & scope, ::tensorflow::Input sp_indices, ::tensorflow::Input sp_values, ::tensorflow::Input sp_shape )
node
::tensorflow::Node * node() const
operator::tensorflow::Input
operator::tensorflow::Input() const
operator::tensorflow::Output
operator::tensorflow::Output() const