тензорный поток:: опс:: РазреженныйApplyFtrl
#include <training_ops.h>
Обновите соответствующие записи в '*var' в соответствии с Ftrl-проксимальной схемой.
Краткое содержание
То есть для строк, для которых у нас есть град, мы обновляем var, accum и Linear следующим образом:
accumnew=accum+grad∗grad
linear+=grad+(accum−lrpowernew−accum−lrpower/lr∗var
quadratic=1.0/(accumlrpowernew∗lr)+2∗l2
var=(sign(linear)∗l1−linear)/quadratic if |linear|>l1 else 0.0
accum=accumnew
Аргументы:
- область: объект области.
- var: Должно быть из переменной().
- accum: Должно быть из переменной().
- линейный: должен быть из переменной().
- град: Градиент.
- индексы: вектор индексов в первом измерении var и accum.
- lr: коэффициент масштабирования. Должно быть скаляр.
- l1: регуляризация L1. Должно быть скаляр.
- l2: регуляризация L2. Должно быть скаляр.
- lr_power: Коэффициент масштабирования. Должно быть скаляр.
Необязательные атрибуты (см. Attrs
):
- use_locking: если
True
, обновление тензоров var и accum будет защищено блокировкой; в противном случае поведение не определено, но может вызывать меньше конфликтов.
Возврат:
-
Output
: То же, что и «var».
Конструкторы и деструкторы | |
---|---|
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power) | |
SparseApplyFtrl (const :: tensorflow::Scope & scope, :: tensorflow::Input var, :: tensorflow::Input accum, :: tensorflow::Input linear, :: tensorflow::Input grad, :: tensorflow::Input indices, :: tensorflow::Input lr, :: tensorflow::Input l1, :: tensorflow::Input l2, :: tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs) |
Общественные функции | |
---|---|
node () const | ::tensorflow::Node * |
operator::tensorflow::Input () const | |
operator::tensorflow::Output () const |
Публичные статические функции | |
---|---|
UseLocking (bool x) |
Структуры | |
---|---|
tensorflow::ops::SparseApplyFtrl::Attrs | Необязательные установщики атрибутов для SparseApplyFtrl . |
Публичные атрибуты
операция
Operation operation
вне
::tensorflow::Output out
Общественные функции
РазреженныйApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power )
РазреженныйApplyFtrl
SparseApplyFtrl( const ::tensorflow::Scope & scope, ::tensorflow::Input var, ::tensorflow::Input accum, ::tensorflow::Input linear, ::tensorflow::Input grad, ::tensorflow::Input indices, ::tensorflow::Input lr, ::tensorflow::Input l1, ::tensorflow::Input l2, ::tensorflow::Input lr_power, const SparseApplyFtrl::Attrs & attrs )
узел
::tensorflow::Node * node() const
оператор::tensorflow::Input
operator::tensorflow::Input() const
оператор::tensorflow::Выход
operator::tensorflow::Output() const
Публичные статические функции
Использование блокировки
Attrs UseLocking( bool x )