tensorflow::ops::ResourceApplyPowerSign

#include <training_ops.h>

Update '*var' according to the AddSign update.

m_t <- beta1 * m_{t-1} + (1 - beta1) * g update <- exp(logbase * sign_decay * sign(g) * sign(m_t)) * g variable <- variable - lr_t * update

Arguments:

  • scope: A Scope object
  • var: Should be from a Variable().
  • m: Should be from a Variable().
  • lr: Scaling factor. Must be a scalar.
  • logbase: Must be a scalar.
  • sign_decay: Must be a scalar.
  • beta: Must be a scalar.
  • grad: The gradient.

Optional attributes (see Attrs):

  • use_locking: If True, updating of the var and m tensors is protected by a lock; otherwise the behavior is undefined, but may exhibit less contention.

Returns:

Public attributes

operation

Public functions

operator::tensorflow::Operation() const

Public static functions

UseLocking(bool x)

Public attributes

operation

Operation operation

Public functions

ResourceApplyPowerSign

 ResourceApplyPowerSign(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input m,
  ::tensorflow::Input lr,
  ::tensorflow::Input logbase,
  ::tensorflow::Input sign_decay,
  ::tensorflow::Input beta,
  ::tensorflow::Input grad
)

ResourceApplyPowerSign

 ResourceApplyPowerSign(
  const ::tensorflow::Scope & scope,
  ::tensorflow::Input var,
  ::tensorflow::Input m,
  ::tensorflow::Input lr,
  ::tensorflow::Input logbase,
  ::tensorflow::Input sign_decay,
  ::tensorflow::Input beta,
  ::tensorflow::Input grad,
  const ResourceApplyPowerSign::Attrs & attrs
)

operator::tensorflow::Operation

 operator::tensorflow::Operation() const 

Public static functions

UseLocking

Attrs UseLocking(
  bool x
)